@
@

  2023

[521] M. Nakazawa and T. Hirooka, gTheory of Higher-Order Hermite-Gaussian Pulse Generation From an FM Mode-Locked Laser,h IEEE J. Quantum Electron., vol. 59, no. 2, 1600325, Apr. (2023).

[522] M. Nakazawa, M. Yoshida, and T. Hirooka, gGAWBS Noise in Digital Coherent Transmission,h J. Lightwave Technol., vol. 41, no. 11, pp. 3358-3371, June (2023).

[523] M. Yoshida, K. Kimura, T. Hirooka, K. Kasai, and M. Nakazawa, gDemodulation performance comparison of high-speed coherent Nyquist pulse signal with analog and digital demultiplexing schemes,h IEICE Trans. Commun. vol. E106-B, no. 11, pp. 1059-1064, November (2023).

[524] M. Nakazawa, M. Yoshida, and T. Hirooka, gExperiments on the Generation of Higher-Order Hermite-Gaussian Pulses From an FM Mode-Locked Laser,h IEEE J. Quantum Electron., vol. 59, no. 6, 1300216, December (2023).

  2022

[511] M. Yoshida, K. Sato, T. Hirooka, K. Kasai, and M. Nakazawa, gPrecise Measurements and their Analysis of GAWBS-Induced Depolarization Noise in Multi-Core Fiber for Digital Coherent Transmission,h IEICE Trans. Comm., vol. E105-B, no. 2, pp. 151-158, February (2022).

[512] M. Nakazawa and T. Hirooka, gTheory of FM Mode-Locking of a Laser as an Arbitrary Optical Function Generator,h IEEE J. Quantum Electron., vol. 58, no. 2, 1300125, April (2022).

[513] K. Kasai, T. Kan, M. Yoshida, T. Hirooka, and M. Nakazawa, gBroadband injection-locked homodyne receiver for digital coherent transmission using a low Q Fabry-Perot LD,h Opt. Express, vol. 30, no. 8, pp. 13345-13355, April (2022).

[514] M. Nakazawa, M. Yoshida, and T. Hirooka, gExperiments on an AM Mode-Locked Laser as an Arbitrary Optical Function Generator,h IEEE J. Quantum Electron., vol. 58, no. 3, 1300218, June (2022).

[515] M. Nakazawa, M. Yoshida, and T. Hirooka, gExperiments on an FM Mode-Locked Laser as an Arbitrary Optical Function Generator,h IEEE J. Quantum Electron., vol. 58, no. 3, 1300316, June (2022).

[516] M. Naghshvarianjahromi, S. Kumar, M. J. Deen, T. Iwaya, K. Kimura, M. Yoshida, T. Hirooka, and M. Nakazawa, gSoftware-Defined Fiber Optic Communications for Ultrahigh-Speed Optical Pulse Transmission Systems,h IEEE J. Sel. Topics Quantum Electron., vol. 28, no. 4, 7500210, July-Aug. 2022.

[517] K. Kimura, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, gExperimental and Numerical Analysis of Ultrahigh-Speed Coherent Nyquist Pulse Transmission with Low-Nonlinearity Dispersion Compensator,h IEICE Trans. Comm., vol. E105-B, no. 9, pp. 1014-1022, Sep. (2022).

[518] M. Nakazawa and T. Hirooka, gTheory of Generation of Various Dark and Negative Pulses From an FM Mode-Locked Laser,h IEEE J. Quantum Electron., vol. 58, no. 5, 1300524, Oct. (2022).

[519] M. Nakazawa, K. Kasai, M. Yoshida, and T. Hirooka, gOptical andWireless Linked Fully Coherent Access System toward Next Generation RAN,h IEICE Trans. Electron. (in Japanese), invited paper, vol. J105-C, no. 11, pp. 315-328, Nov. (2022).

[520] M. Nakazawa, M. Yoshida, and T. Hirooka, gExperiments on Generation of Various Dark and Bright Pulses From an FM Mode-Locked Laser,h IEEE J. Quantum Electron., vol. 58, no. 6, 1600523, December (2022).

  2021

[501] T. Kan, K. Sato, M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, gSpectrally efficient pilot tone-based compensation of inter-channel cross-phase modulation noise in a WDM coherent transmission using injection locking,h Opt. Express, vol. 29, no. 2, pp. 1454-1469, January (2021).

[502] M. Yoshida, T. Kan, K. Kasai, T. Hirooka, and M. Nakazawa, g10 Tbit/s QAM quantum noise stream cipher coherent transmission over 160 km,h J. Lightwave Technol., vol. 39, no. 4, pp. 1056-1063, February (2021).

[503] M. Yoshida, T. Kan, K. Kasai, T. Hirooka, K. Iwatsuki, and M. Nakazawa, g10 channel WDM 80 Gbit/s/ch, 256 QAM bi-directional coherent transmission for a high capacity next-generation mobile fronthaul,h J. Lightwave Technol., vol. 39, no. 5, pp. 1289-1295, March (2021).

[504] M. Yoshida, T. Hirooka, and M. Nakazawa, gUltrahigh-speed Nyquist pulse transmission beyond 10 Tbit/s,h IEEE J. Selected Topics in Quantum Electronics (invited paper), vol. 27, no. 2, 7700612, March/April (2021).

[505] K. Sato, T. Kan, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, gChromatic dispersion dependence of GAWBS phase noise compensation with pilot tone,h Opt. Express, vol. 29, no. 7, pp. 10676-10687, March (2021).

[506] M. Nakazawa, M. Yoshida, and T. Hirooka, gRecent progress and challenges toward ultrahigh-speed transmission beyond 10 Tbit/s with optical Nyquist pulses,h IEICE Electron. Express (invited paper), vol. 18, no. 7, 20212001, April (2021).

[507] M. Nakazawa and T. Hirooka, gA Generalized Mode-locking Theory for a Nyquist Laser with an Arbitrary Roll-off Factor PART I: Master Equations and Optical Filters in a Nyquist Laser,h IEEE J. Quantum Electron., vol. 57, no. 3, 1100117, June (2021).

[508] M. Nakazawa and T. Hirooka, gA Generalized Mode-locking Theory for a Nyquist Laser with an Arbitrary Roll-off Factor PART II: Oscillation Waveforms and Spectral Characteristics,h IEEE J. Quantum Electron., vol. 57, no. 3, 1100215, June (2021).

[509] M. Nakazawa and T. Hirooka, gTheory of AM Mode-Locking of a Laser as an Arbitrary Optical Function Generator,h IEEE J. Quantum Electron., vol. 57, no. 6, 1300320, December (2021).

[510] K. Sato, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, gGAWBS noise correlation between cores in multi-core fibers,h Opt. Express, vol. 29, no. 26, pp. 42523-42537, December (2021).

  2020

[497] N. Takefushi, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, gTheoretical and experimental analyses of GAWBS phase noise in various optical fibers for digital coherent transmission,h Opt. Express vol. 28, no. 3, pp. 2873-2883, February (2020).

[498] N. Takefushi, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, gGAWBS phase noise characteristics in multi-core fibers for digital coherent transmission,h Opt. Express vol. 28, no. 15, pp. 23012-23022, July (2020).

[499] M. Yoshida, N. Takefushi, K. Kasai, T. Hirooka, and M. Nakazawa, gPrecise measurements and their analysis of GAWBS-induced depolarization noise in various optical fibers for digital coherent transmission,h Opt. Express vol. 28, no. 23, pp. 34422-34433, November (2020).

[500] T. Kan, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, gInjection-locked 256 QAM WDM coherent transmissions in C- and L-bands,h Opt. Express vol. 28, no. 23, pp. 34665-34676, November (2020).

  2019

[494] M. Yoshida, K. Kimura, T. Iwaya, K. Kasai, T. Hirooka, and M. Nakazawa, gSingle-channel 15.3 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 8.3 bit/s/Hz,h Opt. Express vol. 27, no. 20, pp. 28952-28967, September (2019).

[495] M. Yoshida, N. Takefushi, K. Kasai, T. Hirooka, and M. Nakazawa, "Suppression of large error floor in 1024 QAM digital coherent transmission by compensating for GAWBS phase noise," Opt. Express vol. 27, no. 25, pp. 36691-36698, December (2019).

[496] R. Hirata, T. Hirooka, M. Yoshida, and M. Nakazawa, gWavelength-tunable sub-picosecond optical switch over entire C-band using nonlinear optical loop mirror,h IEICE Electron. Express vol. 16, no. 23, 20190664, December (2019).

  2018

[487] S. Okamoto, M. Terayama, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, gExperimental and numerical comparison of probabilistically shaped 4096 QAM and a uniformly shaped 1024 QAM in all-Raman amplified 160 km transmission,h Opt. Express vol. 26, no. 3, pp. 3535-3543, February (2018).

[488] K. Kasai, M. Nakazawa, M. Ishikawa, and H. Ishii, g 8 kHz linewidth, 50 mW output, full C-band wavelength tunable DFB LD array with self-optical feedback,h Opt. Express vol. 26, no. 5, pp. 5675-5685, March (2018).

[489] D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, M. Yoshida, K. Kasai, M. Nakazawa, H. Takahashi, K. Igarashi, I. Morita, and M. Suzuki,, g10.16-peta-b/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C+L band,h J. Lightwave Technol. vol. 36, no. 6, pp. 1362-1368, March (2018).

[490] M. Nakazawa, M. Yoshida, M. Terayama, S. Okamoto, K. Kasai, and T. Hirooka, "Observation of guided acoustic-wave Brillouin scattering noise and its compensation in digital coherent optical fiber transmission," Opt. Express vol. 26, no. 7, pp. 9165-9181, April (2018).

[491] Y. Wang, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa, "Single-channel 200 Gbit/s, 10 Gsymbol/s-1024 QAM injection-locked coherent transmission over 160 km with a pilot-assisted adaptive equalizer," Opt. Express vol. 26, no. 13, pp. 17015-17024, June (2018).

[492] K. Kimura, J. Nitta, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, "Single-channel 7.68 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 9.7 bit/s/Hz," Opt. Express vol. 26, no. 13, pp. 17418-17428, June (2018).

[493] T. Hirooka, R. Hirata, J. Wang, M. Yoshida, and M. Nakazawa, gSingle-channel 10.2 Tbit/s (2.56 Tbaud) optical Nyquist pulse transmission over 300 km,h Opt. Express, vol. 26, no. 21, pp. 27221-27236, October (2018).

  2017

[479] J. Nitta, M. Yoshida, K. Kimura, K. Kasai, T. Hirooka, and M. Nakazawa, gSingle-Channel 3.84 Tbit/s, 64 QAM Coherent Nyquist Pulse Transmission over 150 km with a Spectral Efficiency of 10.6 Bit/s/Hz,h Opt. Express, vol. 25, no. 13, pp. 15199-15207, June (2017).

[480] M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, R. Namiki, gQAM Quantum Noise Stream Cipher Transmission over 100 km with Continuous Variable Quantum Key Distribution," IEEE J. Quantum Electron., vol. 53, no. 4, 8000316, August (2017).

[481] M. Yoshida, T. Hirooka, and M. Nakazawa, gLow-loss and reflection-free fused type fan-out device for 7-core fiber based on a bundled structure,h Opt. Express, vol. 25, no. 16, pp. 18817-18826, August (2017).

[482] S. Kumar and M. Nakazawa, gDiscrete solitons in optical fiber systems with large pre-dispersion,h Opt. Express, vol. 25, no. 17, pp. 19923-19945, August (2017).

[483] K. Kasai, M. Nakazawa, Y. Tomomatsu, and T. Endo, g1.5 ƒÊm, mode-hop-free full C-band wavelength tunable laser diode with a linewidth of 8 kHz and a RIN of -130 dB/Hz and its extension to the L-band,h Opt. Express, vol. 25, no. 18, pp. 22113-22124, September (2017).

[484] T. Kan, K. Kasai, M. Yoshida, and M. Nakazawa, g42.3 Tbit/s, 18 Gbaud 64 QAM WDM coherent transmission over 160 km in the C-band using an injection-locked homodyne receiver with a spectral efficiency of 9 bit/s/Hz,h Opt. Express vol. 25, no. 19, pp. 22726-22737, September (2017).

[485] K. Harako, M. Yoshida, T. Hirooka, and M. Nakazawa, "A 40 GHz, 770 fs regeneratively mode-locked erbium fiber laser operating at 1.6 ƒÊm," IEICE Electron. Express, vol. 14, no. 18, 20170829, October (2017).

[486] H. Ishii, N. Fujiwara, K. Watanabe, S. Kanazawa, M. Itoh, H. Takenouchi, Y. Miyamoto, K. Kasai, and M. Nakazawa, gNarrow Linewidth Tunable DFB Laser Array Integrated with Optical Feedback Planar Lightwave Circuit (PLC),h IEEE Sel. Top. Quantum Electron. vol. 23, no. 6, 1501007, November/December (2017).

  2016

[467] M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, gSingle-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km,h Opt. Express, vol. 24, no. 1, pp. 652-661, January (2016).

[468] D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, gSingle-channel 1.92 Tbit/s, 64 QAM coherent Nyquist orthogonal TDM transmission with a spectral efficiency of 10.6 bit/s/Hz,h J. Lightwave Technol. vol. 34, no. 2, pp. 768-775, January (2016).

[469] K. Kasai, M. Yoshida, and M. Nakazawa, g295 mW output, frequency-stabilized erbium silica fiber laser with a linewidth of 5 kHz and a RIN of -120 dB/Hz,h Opt. Express vol. 24, no. 3, pp. 2737-2748, February (2016).

[470] K. Kasai and M. Nakazawa, gUltra-multilevel digital coherent optical transmission employing a narrow linewidth laser, an optical phase-locked loop circuit and injection-locking scheme,h The Review of Laser Engineering (in Japanese), vol. 44, no. 2, pp. 106-110, February (2016).

[471] M. Nakazawa and T. Hirooka, "A mode locking theory of the Nyquist laser," Opt. Express vol. 24, no. 5, pp. 4981-4995, March (2016).

[472] M. Nakao, M. Yoshida, T. Hirooka, and M. Nakazawa, gA 1.55 μm, 271 fs and 1.07 μm, 294 fs simultaneously mode-locked Er- and Yb-doped fiber laser with a single SWNT/PVA saturable absorber,h IEICE Electron. Express, vol. 13, no. 14, 20160515, July (2016).

[473] M. Nakazawa and T. Hirooka, gA Non-Perturbative Mode-Locking Theory of the Nyquist Laser With a Dirichlet Kernel Solution,h IEEE J. Quantum Electron. vol. 52, no. 8, 1300113, August (2016).

[474] K. Harako, D. Suzuki, T. Hirooka, and M. Nakazawa, gRoll-off factor dependence of Nyquist pulse transmission,h Opt. Express, vol. 24, no. 19, pp. 21986-21994, September (2016).

[475] Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, g320 Gbit/s, 20 Gsymbol/s 256 QAM coherent transmission over 160 km by using injection-locked local oscillator,h Opt. Express, vol. 24, no. 19, pp. 22088-22096, September (2016).

[476] T. Hirooka, K. Tokuhira, M. Yoshida, and M. Nakazawa, g440 fs, 9.2 GHz regeneratively mode-locked erbium fiber laser with a combination of higher-order solitons and a SESAM saturable absorber,h Opt. Express, vol. 24, no. 21, pp. 24255-24264, October (2016).

[477] M. Yoshida, K. Yoshida, K. Kasai, and M. Nakazawa, g1.55 ƒÊm hydrogen cyanide optical frequency-stabilized and 10 GHz repetition-rate-stabilized mode-locked fiber laser,h Opt. Express, vol. 24, no. 21, pp. 24287-24296, October (2016).

[478] D. Suzuki, K. Harako, T. Hirooka, and M. Nakazawa, gSingle-channel 5.12 Tbit/s (1.28 Tbaud) DQPSK transmission over 300 km using non-coherent Nyquist pulses,h Opt. Express, vol. 24, no. 26, pp. 29682-29690, December (2016).

  2015

[457] A. Fujisaki, S. Matsushita, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, "An 11.6 W output, 6 kHz linewidth, single-polarization EDFA-MOPA system with a 13C2H2 frequency stabilized fiber laser," Opt. Express, vol. 23, no. 2, pp. 1081-1087, January (2015).

[458] S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, "2048 QAM (66Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz," Opt. Express, vol. 23, no. 4, pp.4960-4969, February (2015).

[459] M. Yoshida, S. Beppu, K. Kasai, T. Hirooka, and M. Nakazawa, g1024 QAM, 7-core (60 Gbit/s x 7) fiber transmission over 55 km with an aggregate potential spectral efficiency of 109 bit/s/Hz,h Opt. Express, vol. 23, no. 16, pp. 20760-20766, August (2015).

[460] T. Hirooka, D. Seya, K. Harako, D. Suzuki, and M. Nakazawa, gUltrafast Nyquist OTDM demultiplexing using optical Nyquist pulse sampling in an all-optical nonlinear switch,h Opt. Express, vol. 23, no. 16, pp. 20858-20866, August (2015).

[461] K. Kasai, Y. Wang, D. O. Otuya, M. Yoshida, and M. Nakazawa, g448 Gbit/s, 32 Gbaud 128 QAM coherent transmission over 150 km with a potential spectral efficiency of 10.7 bit/s/Hz,h Opt. Express vol. 23, no. 22, pp. 28423-28429, November (2015).

[462] K. Kasai, Y. Wang, S. Beppu, M. Yoshida, and M. Nakazawa, g80 Gbit/s, 256 QAM coherent transmission over 150 km with an injection-locked homodyne receiver,h Opt. Express, vol. 23, no. 22, pp. 29174-29183, November (2015).

[463] K. Harako, D. Suzuki, T. Hirooka, and M. Nakazawa, g2.56 Tbit/s/ch (640 Gbaud) polarization-multiplexed DQPSK non-coherent Nyquist pulse transmission over 525 km,h Opt. Express, vol. 23, no. 24, pp. 30801-30806, November (2015).

[464] T. Hirooka, K. Kasai, Y. Wang, M. Nakazawa, M. Shiraiwa, Y. Awaji, and N. Wada, gFirst demonstration of digital coherent transmission in a deployed ROADM network with a 120 Gbit/s polarization-multiplexed 64 QAM signal,h IEICE Electron. Express, vol. 12, no. 23, 20150884, December (2015).

[465] T. Hirooka and M. Nakazawa, gQ-factor analysis of nonlinear impairments in ultrahigh-speed Nyquist pulse transmission,h Opt. Express, vol. 23, no. 26, pp. 33484-33492, December (2015).

[466] T. Yajima, J. Yamamoto, Y. Kinoshita, F. Ishii, T. Hirooka, M. Yoshida, and M. Nakazawa, gOH-free low loss single-mode fiber fabricated by slurry casting / rod-in-tube method,h IEICE Electron. Express, vol. 12, no. 24, 20151005, December (2015).

  2014

[445] M. Nakazawa, M. Yoshida, T. Hirooka, and K. Kasai, "QAM quantum stream cipher using digital coherent optical transmission," Opt. Express vol. 22, no. 4, pp. 4098-4107, February (2014).

[446] M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, "Adaptive 4~64 QAM real-time coherent optical transmission over 320 km with FPGA-based transmitter and receiver," Opt. Express vol. 22, no. 13, pp. 16520-16527, June (2014).

[447] M. Nakazawa, gExabit optical communication explored using 3M scheme,h Jpn. J. Appl. Phys. vol. 53, 08MA01 (2014).

[448] M. Nakazawa, M. Yoshida, and T. Hirooka, gThe Nyquist laser,h Optica vol. 1, no. 1, pp. 15-22, July (2014).

[449] T. Komukai, H. Kubota, T. Sakano, T. Hirooka, and M. Nakazawa, gPlug-and-play optical interconnection using digital coherent technology for resilient network based on movable and deployable ICT resource unit,h IEICE Trans. Comm. vol. E97-B, no. 7, pp. 1334-1341, July (2014).

[450] T. Hirooka, M. Nakazawa, T. Komukai, and T. Sakano, g100 Gbit/s real-time digital coherent transmission over a 32 km legacy multi-mode graded-index fiber,h IEICE Electron. Express vol. 11, no. 15, 20140563, August (2014).

[451] Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, g60 Gbit/s, 64 QAM LD-based injection-locked coherent heterodyne transmission over 160 km with a spectral efficiency of 9 bit/s/Hz,h IEICE Electron. Express vol. 11, no. 17, 20140601, September (2014).

[452] D. O. Otuya, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, gSingle-channel 1.92 Tbit/s, Pol-Mux-64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 7.5 bit/s/Hz,h Opt. Express, vol. 22, no. 20, pp. 23776-23785, October (2014).

[453] K. Harako, D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa,gHigh-performance TDM demultiplexing of coherent Nyquist pulses using time-domain orthogonality,h Opt. Express, vol. 22, no. 24, pp. 29456-29464, December (2014).

[454] M. Nakazawa, gEvolution of EDFA from single-core to multi-core and related recent progress in optical communication,h Optical Review, vol. 21, no. 6, pp. 862-874, December (2014).

[455] M. Nakazawa, M. Yoshida, and T. Hirooka, gMeasurement of mode coupling distribution along a few-mode fiber using a synchronous multi-channel OTDR,h Opt. Express, vol. 22, no. 25, pp. 31299-31309, December (2014).

[456] Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, g120 Gbit/s injection-locked homodyne coherent transmission of polarization-multiplexed 64 QAM signals over 150 km,h Opt. Express, vol. 22, no. 25, pp. 31310-31316, December (2014).


  2013

[434] T. Omiya, M. Yoshida, and M. Nakazawa, g400 Gbit/s 256 QAM-OFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency by using high-resolution FDE,h Opt. Express vol. 21, no. 3, pp. 2632-2641, February (2013).

[435] K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, g160 Gbit/s-300 km single-channel transmission in the 1.1 ƒÊm band with a precise GVD and slope compensation,h Opt. Express, vol. 21, no. 4, pp. 4303-4310, February (2013).

[436] T. Hirooka, K. Harako, P. Guan, and M. Nakazawa, gSecond-order PMD-induced crosstalk between polarization-multiplexed signals and its impact on ultrashort optical pulse transmission,h J. Lightwave Technol. vol. 31, no. 5, pp. 809-814, March (2013).

[437] T. Sakano, Z. M. Fadlullah, T. Kumagai, A. Takahara, T. Ngo, H.Nishiyama, H. Kasahara, S. Kurihara, M. Nakazawa, F. Adachi, and N.Kato, gDisaster resilient networking - a new vision based on movable and deployable resource units,h IEEE Network, vol. 27, no. 4, pp.40-46, July/August (2013).

[438] K. Harako, D. Seya, T. Hirooka, and M. Nakazawa, g640 Gbaud(1.28 Tbit/s/ch) optical Nyquist pulse transmission over 525 km with substantial PMD tolerance,h Opt. Express, vol. 21, no. 18, pp.21063-21076, September (2013).

[439] D. O. Otuya, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, gA single-channel 1.92 Tbit/s, 64 QAM coherent optical pulse transmission over 150 km using frequency-domain equalization,h Opt. Express, vol. 21, no. 19, pp. 22808-22816, September (2013).

[440] M. Nakazawa, gDisaster-resilient networks and optical communication technologies,h Journal of the Institute of Electronics, Information and Communication Engineers, vol. 96, no. 10, pp. 748-751, October (2013).

[441] Y. Wang, K. Kasai, T. Omiya, and M. Nakazawa, g120 Gbit/s, polarization-multiplexed 10 Gsymbol/s, 64 QAM coherent transmission over 150 km using an optical voltage controlled oscillator,h Opt. Express, vol. 21, no. 23, pp. 28290-28296, November (2013).

[442] K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, "A single-channel 1.28 Tbit/s-58 km transmission in the 1.1 ƒÊm band with wideband GVD and slope compensation," Opt. Express vol. 21, no. 23, pp. 29055-29064, November (2013).

[443] M. Yoshida, T. Hirooka, M. Nakazawa, K. Imamura, R. Sugizaki, and T. Yagi, "Detailed comparison between mode couplings along multi-core fibers and structural irregularities using a synchronous multi-channel OTDR system with a high dynamic range," Opt. Express vol. 21, no. 24, pp. 29157-29164, December (2013).

[444] T. Yajima, J. Yamamoto, F. Ishii, T. Hirooka, M. Yoshida, and M. Nakazawa, "Low-loss photonic crystal fiber fabricated by a slurry casting method," Opt. Express vol. 21, no. 25, pp. 30500-30506, December (2013).


  2012

[422] M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, "Ultrahigh-speed gorthogonalh TDM transmission with an optical Nyquist pulse train," Opt. Express vol. 20, no. 2. pp. 1129-1140, Jan. (2012).

[423] M. Nakazawa, T. Hirooka, M. Yoshida, and K. Kasai, gUltrafast coherent optical communication,h IEEE J. Sel. Top. Quantum Electron., vol. 18, no. 1, pp. 363-376, Jan. (2012).

[424] K. Kasai, D. O. Otuya, M. Yoshida, T. Hirooka, and M. Nakazawa, gSingle-Carrier 800-Gb/s 32 RZ/QAM Coherent Transmission Over 225 km Employing a Novel RZ-CW Conversion Technique,h IEEE Photon. Technol. Lett., vol. 24, no. 5, pp. 416-418, March (2012).

[425] M. Yoshida, T. Omiya, K. Kasai, and M. Nakazawa, "64 QAM real-time coherent transmission using FPGA-based receiver," IEICE Trans. Comm., vol. J95-B, no. 3, pp. 405-413, March (2012)

[426] Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, g1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,h Opt. Express, vol. 20, no. 11, pp. 12508-12514, May (2012).

[427] M. Nakazawa, M. Yoshida, and T. Hirooka, gNondestructive measurement of mode couplings along a multi-core fiber using a synchronous multi-channel OTDR,h Opt. Express, vol. 20, no. 11, pp. 12530-12540, May (2012).

[428] T. Hirooka, P. Ruan, P. Guan, and M. Nakazawa, gHighly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km,h Opt. Express, vol. 20, no. 14, pp. 15001-15008, July (2012).

[429] K. Toyoda, Y. Koizumi, T. Omiya, M. Yoshida, T. Hirooka, and M. Nakazawa, gMarked performance improvement of 256 QAM transmission using a digital back-propagation method,h Opt. Express, vol. 20, no. 18, pp. 19815-19821, August (2012).

[430] T. Hirooka and M. Nakazawa, gLinear and nonlinear propagation of optical Nyquist pulses in fibers,h Opt. Express, vol. 20, no. 18, pp. 19836-19849, August (2012).

[431] Y. Koizumi, K. Toyoda, T. Omiya, M. Yoshida, T. Hirooka, and M. Nakazawa, "512 QAM transmission over 240 km using frequency-domain equalization in a digital coherent receiver," Opt. Express vol. 20, no. 21, pp. 23383-23389, September (2012).

[432] K. Tokuhira, F. Suzuki, M. Yoshida, and M. Nakazawa, gA Cesium optical atomic clock with high optical frequency stability,h IEICE Electron. Express, vol. 9, no. 18, pp. 1496-1503, September (2012).

[433] T. Ono, Y. Hori, M. Yoshida, T. Hirooka, M. Nakazawa, J. Mata, and J. Tsukamoto, gA 31 mW, 280 fs passively mode-locked fiber soliton laser using a high heat-resistant SWNT/P3HT saturable absorber coated with siloxane,h Opt. Express vol. 20, no. 21, pp. 23659-23665, October (2012).

  2011

[410] D. Yang, S. Kumar, and M. Nakazawa, gInvestigation and comparison of digital backward propagation schemes for OFDM and single-carrier fiber-optic transmission systems,h Opt. Fiber Technol., vol. 17, no. 1, pp. 84-90, January (2011).

[411] M. Yoshida, S. Okamoto, T. Omiya, K. Kasai, and M. Nakazawa, g256 QAM digital coherent optical transmission using Raman amplifiers,h IEICE Trans. Comm., vol. E94-B, no. 2, pp. 417-424, February (2011).

[412] P. Guan, H. C. Hansen Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, gSingle-channel 1.28 Tbit/s-525 km DQPSK transmission using ultrafast time-domain optical Fourier transformation and nonlinear optical loop mirror,h IEICE Trans. Comm., vol. E94-B, no. 2, pp. 430-436, February (2011).

[413] E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A.Scavennec, F. A. Kish, D. F. Welch, R. Nagarajan, C. H. Joyner, R. P.Schneider Jr., S. W. Corzine, M. Kato, P. W. Evans, M. Ziari, A. G. Dentai,J. L. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D.J. Richardson, F.Poletti, M. N. Petrovich, S. U. Alam, W. H. Loh and D. N. Payne, gScience and technology challenges in XXIst century optical communications,h Comptes Rendus Physique, vol. 12, no. 4, pp. 387-416, May (2011).

[414] K. Kasai, A. Mori, and M. Nakazawa,g1.5-ƒÊm Frequency-stabilized ƒÉ/4-shifted DFB LD employing an external fiber ring cavity with a linewidth of 2.6 kHz and an RIN of - 135 dB/Hz ,h IEEE Photon. Technol. Lett., vol. 23, no. 15, pp. 1046-1048, August (2011).

[415] Y. Wang, K. Kasai, and M. Nakazawa, gPolarization-multiplexed, 10 Gsymbol/s, 64 QAM coherent transmission over 150 km with OPLL-based homodyne detection employing narrow linewidth LDs,h IEICE Electron. Express, vol. 8, no. 17, pp. 1444-1449, September (2011).

[416] K. Fukuchi and M. Nakazawa, "Ultra high capacity optical fiber transmission technologies," IEEJ Journal, vol. 131, no. 9, pp. 611-613, September (2011).

[417] T. Hirooka, T. Hirano, P. Guan, and M. Nakazawa, "PMD-induced crosstalk in ultrahigh-speed polarization-multiplexed optical transmission in the presence of PDL," J. Lightwave Technol., vol. 29, no. 19, pp. 2963-2970, Oct. (2011).

[418] Y. Tomiyama, K. Harako, P. Guan, T. Hirooka, and M. Nakazawa, "Comparison between polarization-multiplexed DPSK and single-polarization DQPSK in 640 Gbaud, 1.28 Tbit/s-500 km single-channel transmission," Opt. Fiber Technol., invited paper, vol. 17, no. 5, pp. 439-444, Oct. (2011).

[419] K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, "A 10 GHz 1.1 ps Regeneratively Mode-Locked Yb Fiber Laser in the 1.1 ƒÊm Band," Opt. Express, vol. 19, no. 25, pp. 25426-25432, Dec. (2011).

[420] P. Guan, T. Hirano, K. Harako, Y. Tomiyama, T. Hirooka, and M. Nakazawa, "2.56 Tbit/s/ch Polarization-Multiplexed DQPSK Transmission over 300 km Using Time-Domain Optical Fourier Transformation," Opt. Express, vol. 19, no. 26, pp. B567-B573, Dec. (2011).

[421] M. Nakazawa, K. Kasai, M. Yoshida, and T. Hirooka, "Novel RZ-CW conversion scheme for ultra multi-level, high-speed coherent OTDM transmission," Opt. Express, vol. 19, no. 26, pp. B574-B580, Dec. (2011). 

  2010

[398] M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, g256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,h IEEE Photon. Technol. Lett., vol. 22, no. 3, pp. 185-187, February (2010).

[399] K. Koizumi, M. Yoshida, and M. Nakazawa, gA 10-GHz optoelectronic oscillator at 1.1 μm using a single-mode VCSEL and a photonic crystal fiber,h IEEE Photon. Technol. Lett., vol. 22, no. 5, pp. 293-295, March (2010).

[400] M. Nakazawa, gRecent progress on ultrafast/ultrashort/frequency-stabilized erbium-doped fiber lasers and their applications,h Frontiers of Optoelectronics in China, vol. 3, no. 1, pp. 38-44, March (2010).

[401] K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, gSingle-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,h IEEE Photon. Technol. Lett., vol. 22, no. 8, pp. 562-564, April (2010).

[402] F. Shohda, M. Nakazawa, J. Mata, and J. Tsukamoto, gA 113 fs fiber laser operating at 1.56 μm using a cascadable film-type saturable absorber with P3HT-incorporated single-wall carbon nanotubes coated on polyamide,h Opt. Express, vol. 18, no. 9, pp. 9712-9721, April (2010).

[403] F. Shohda, Y. Hori, M. Nakazawa, J. Mata, and J. Tsukamoto, g131 fs, 33 MHz all-fiber soliton laser at 1.07 ƒÊm with a film-type SWNT saturable absorber coated on polyimide,h Opt. Express, vol. 18, no. 11, pp. 11223-11229, May (2010).

[404] M. Nakazawa, "Advances in information communication technology based on lasers," Journal of Applied Physics (Ouyou-Butsuri, in Japanese), vol. 79, no. 6, pp. 508-516, June (2010).

[405] T. Hirano, P. Guan, T. Hirooka, and M. Nakazawa, g640-Gb/s/channel single-polarization DPSK transmission over 525 km with ultrafast time-domain optical Fourier transformation,h IEEE Photon. Technol. Lett., vol. 22, no. 14, pp. 1042-1044, July (2010).

[406] T. Omiya, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa, g60 Gbit/s 64 QAM-OFDM coherent optical transmission with a 5.3 GHz bandwidth,h IEICE Electron. Express, vol. 7, no. 15, pp. 1163-1168, August (2010).

[407] K. S. Abedin and M. Nakazawa, gReal time monitoring of a fiber fuse using an optical time-domain reflectometer,h Opt. Express, vol. 18, no. 20, pp. 21315-21321, Septermber (2010).

[408] T. Morisaki, M. Yoshida, and M. Nakazawa, gOptical frequency-tunable Cs atomic clock with a 9.19GHz mode-hop-free fiber laser,h IEICE Electron. Express, vol. 7, no. 21, pp. 1652-1658, November (2010).

[409] P. Guan, H. C. Hansen Mulvad, K. Kasai, T. Hirooka, and M. Nakazawa, gHigh Time-Resolution 640-Gb/s Clock Recovery Using Time-Domain Optical Fourier Transformation and Narrowband Optical Filter,h IEEE Photon. Technol. Lett., vol. 22, no. 23, pp. 1735-1737, December (2010).

  2009

[387] M. Nakazawa, "Ultra-multilevel coherent QAM optical transmission technology," Review of Laser Engineering (in Japanese), vol. 37, no. 3, pp. 101-106, March (2009).

[388] K. S. Abedin, M. Nakazawa, and T. Miyazaki, "Backreflected radiation due to a propagating fiber fuse," Opt. Express, vol. 17, no. 8, pp. 6525-6531, April (2009).

[389] S. Masuda, S. Niki, and M. Nakazawa, "Environmentally stable, simple passively mode-locked fiber ring laser using a four-port circulator," Opt. Express, vol. 17, no. 8, pp. 6613-6622, April (2009).

[390] K. Kasai and M. Nakazawa, gFM-eliminated C2H2 frequency-stabilized laser diode with an RIN of -135 dB/Hz and a linewidth of 4 kHz,h Opt. Lett., vol. 34, no. 14, pp. 2225-2227, July (2009).

[391] M. Nakazawa, g20 years of EDFA and future prospects,h IEICE Trans. Electron. (in Japanese), vol. J92-C, no. 8, pp. 339-359, August (2009).

[392] T. Hirooka, M. Okazaki, T. Hirano, P. Guan, M. Nakazawa, and S. Nakamura, gAll-optical demultiplexing of 640-Gb/s OTDM-DPSK signal using a semiconductor SMZ switch,h IEEE Photon. Technol. Lett., vol. 21, no. 20, pp. 1574-1576, October (2009).

[393] K. S. Abedin, T. Miyazaki, and M. Nakazawa, gMeasurements of spectral broadening and Doppler shift of backreflections from a fiber fuse using heterodyne detection,h Opt. Lett., vol. 34, no. 20, pp. 3157-3159, October (2009).

[394] P. Guan, M. Okazaki, T. Hirano, T. Hirooka, and M. Nakazawa, gLow-penalty 5x320 Gbit/s/single-channel WDM DPSK transmission over 525 km using time-domain optical Fourier transformation,h IEEE Photon. Technol. Lett., vol. 21, no. 21, pp. 1579-1581, November (2009).

[395] K. Koizumi, M. Yoshida, and M. Nakazawa, g10-GHz 11.5-ps pulse generation from a single-mode gain-switched InGaAs VCSEL at 1.1 μm,h IEEE Photon. Technol. Lett., vol. 21, no. 22, pp. 1704-1706, November 2009.

[396] K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, g10 Gbit/s photonic crystal fiber transmissions with 1.1 μm directly-modulated single-mode VCSEL,h IEICE Electron. Express, vol. 6, no. 22, pp. 1615-1620, November 2009.

[397] F. Shohda, M. Nakazawa, R. Akimoto, and H. Ishikawa, gAn 88 fs fiber soliton laser using a quantum well saturable absorber with an ultrafast inersubband transition,h Opt. Express, vol. 17, no. 25, pp. 22499-22504, December 2009.

  2008

[372] K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, gThe use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission,h IEICE Electron. Express, vol. 5, no. 1, pp. 6-10, January (2008).

[373] M. Yoshida, H. Goto, K. Kasai, and M. Nakazawa, g64 and 128 coherent QAM optical transmission over 150 km using frequency-stabilized laser and heterodyne PLL detection,h Opt. Express, vol. 16, no. 2, pp. 829-840, January (2008).

[374] M. Nakazawa and M. Yoshida, gScheme for independently stabilizing the repetition rate and optical frequency of a laser using a regenerative mode-locking technique,h Opt. Lett., vol. 33. no. 10, pp. 1059-1061, May (2008).

[375] T. Hirooka, M. Nakazawa, and K. Okamoto, gBright and dark 40 GHz parabolic pulse generation using a picosecond optical pulse train and an arrayed waveguide grating ,h Opt. Lett., vol. 33, no. 10, pp. 1102-1104, May (2008).

[376] T. Hirooka, M. Okazaki, and M. Nakazawa, gA straight-line 160-Gb/s DPSK transmission over 1000 km with time-domain optical Fourier transformation,h IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 1094-1096, July (2008).

[377] H. T. Quynhanh, A. Suzuki, M. Yoshida, T. Hirooka, and M. Nakazawa, gA λ/4-shifted distributed-feedback laser diode with a fiber ring cavity configuration having an OSNR of 85 dB and a linewidth of 7 kHz,h IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1578-1580, September (2008).

[378] H. Goto, M. Yoshida, T. Omiya, K. Kasai, and M. Nakazawa, gPolarization and frequency division multiplexed 1Gsymbol/s, 64 QAM coherent optical transmission with 8.6bit/s/Hz spectral efficiency over 160km,h IEICE Electron. Express, vol. 5, no. 18, pp. 776-781, September (2008).

[379] Y. Nakajima, H. Inaba, F. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, "Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation," Opt. Comm., vol. 281, no. 17, pp. 4484-4487, September (2008).

[380] T. Hirooka, K. Osawa, M. Okazaki, M. Nakazawa, and H. Murai, gStimulated Brillouin scattering in ultrahigh-speed in-phase RZ and CS-RZ OTDM transmission,h IEEE Photon. Technol. Lett., vol. 20, no. 20, pp. 1694-1696, October (2008).

[381] T. Hirooka and M. Nakazawa, "All-optical 40-GHz time-domain Fourier transformation using XPM with a dark parabolic pulse," IEEE Photon. Technol. Lett., vol. 20, no. 22, pp. 1869-1871, November (2008).

[382] T. Hirooka, M. Okazaki, P. Guan, and M. Nakazawa, "320-Gb/s single-polarization DPSK transmission over 525 km using time-domain optical Fourier transformation," IEEE Photon. Technol. Lett., vol. 20, no. 22, pp. 1872-1874, November (2008).

[383] M. Nakazawa, K. Kasai, and M. Yoshida, "C2H2 absolutely optical frequency-stabilized and 40 GHz repetition-rate-stabilized, regeneratively mode-locked picosecond erbium fiber laser at 1.53 m," Opt. Lett., vol. 33, no. 22, pp. 2641-2643, November (2008).

[384] F. Shohda, T. Shirato, M. Nakazawa, J. Mata, and J. Tsukamoto, "147 fs, 51 MHz soliton fiber laser at 1.56 m with a fiber-connector-type SWNT/P3HT saturable absorber," Opt. Express, vol. 16, no. 25, pp. 20943-20948, December (2008).

[385] M. Okazaki, P. Guan, T. Hirooka, M. Nakazawa, and T. Miyazaki, "160-Gb/s 200-km field transmission experiment with large PMD using a time-domain optical Fourier transformation technique," IEEE Photon. Technol. Lett., vol. 20, no. 24, pp. 2192-2194, December (2008).

[386] F. Shohda, T. Shirato, M. Nakazawa, K. Komatsu, and T. Kaino, "A passively mode-locked femtosecond soliton fiber laser at 1.5 ƒÊm with a CNT-doped polycarbonate saturable absorber," Opt. Express, vol. 16, no. 26, pp. 21191-21198, December (2008).

  2007

[356] H. Hasegawa, Y. Oikawa, and M. Nakazawa, g10 Gbit/s 2 km photonic crystal fiber transmission with 850 nm directly modulated singlemode VCSEL,h Electron. Lett., vol. 43, no. 2, pp. 117-119, January (2007).

[357] M. Nakazawa, M. Yoshida, and T. Hirooka, gUltra-stable regeneratively mode-locked laser as an opto-electronic microwave oscillator and its application to optical metrology,h IEICE Trans. Electron., Invited paper, vol. E90-C, no. 2, pp. 443-449, February (2007).

[358] K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, gOptical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,h IEICE Electron. Express, vol. 4, no. 3, pp. 77-81, February (2007).

[359] Y. Oikawa, H. Hasegawa, K. Suzuki, Y. Inoue, T. Hirooka, and M. Nakazawa, g4x10 Gb/s WDM transmission over a 5-km-long photonic crystal fiber in the 800-nm region,h IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 613-615, April (2007).

[360] A. Suzuki, Y. Takahashi, M.Yoshida, and M. Nakazawa, gA CW polarization-maintaining λ/4 shifted DFB Er-doped fiber laser at 1.54 μm,h IEICE Electron. Express, vol. 4, no. 8, pp. 251-257, April (2007).

[361] J. Hongo, K. Kasai, M. Yoshida, and M. Nakazawa, g1-Gsymbol/s 64-QAM coherent optical transmission over 150 km,h IEEE Photon. Technol. Lett., vol. 19, no. 9, pp. 638-640, May (2007).

[362] T. Hirayama, M. Yoshida, M. Nakazawa, K. Hagimoto, and T. Ikegami, gMode-locked laser-type optical atomic clock with an optically pumped Cs gas cell,h Opt. Lett., vol. 32, no. 10, pp. 1241-1243, May (2007).

[363] H. Hasegawa, Y. Oikawa, T. Hirooka, and M. Nakazawa, g40 Gbit/s-2 km photonic crystal fiber transmission with 850 nm singlemode VCSEL,h Electron. Lett., vol. 43, no. 11, pp. 642-644, May (2007).

[364] M. Yoshida, T. Hirayama, M. Nakazawa, K. Hagimoto, and T. Ikegami, gRegeneratively mode-locked fiber laser with a repetition rate stability of 4.9~10-15 using a hydrogen maser phase-locked loop,h vol. 32, no. 13, pp. 1827-1829, July (2007).

[365] M. Yoshida, K. Kasai, and M. Nakazawa, gMode-hop-free, optical frequency tunable 40 GHz mode-locked fiber laser,h IEEE J. Quantum Electron., vol. 43, no. 8, pp. 704-708, August (2007).

[366] M. Nakazawa, H. Hasegawa, and Y. Oikawa, g10-GHz 8.7-ps pulse generation from a single-mode gain-switched AlGaAs VCSEL at 850 nm,h IEEE Photon. Technol. Lett,, vol. 19, no. 16, pp. 1251-1253, August (2007).

[367] H. Hasegawa, Y. Oikawa, and M. Nakazawa, gA 10-GHz optoelectronic oscillator at 850 nm using a single-mode VCSEL and a photonic crystal fiber,h IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1451-1453, October (2007).

[368] A. Suzuki, Y. Takahashi, M. Yoshida, and M. Nakazawa, gAn ultralow noise and narrow linewidth λ/4-shifted DFB Er-doped fiber laser with a ring cavity configuration,h IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1463-1465, October (2007).

[369] M. Nakazawa, T. Hirooka, and M. Yoshida, gOptical fiber transmission of standard signals using optical combs,h The Review of Laser Engineering (in Japanese), vol. 35, no. 10, pp. 649-653, October (2007).

[370] T. Hirayama, M. Yakabe, M. Yoshida, M. Nakazawa, Y. Koga, and K. Hagimoto, gAn ultrastable Cs optical atomic clock with a 9.1926-GHz regeneratively mode-locked fiber laser,h IEICE Trans. Electron. (in Japanese), vol. J90-C, no. 12, pp. 977-987, December (2007).

[371] M. Yoshida, A. Ono, and M. Nakazawa, "10 GHz regeneratively mode-locked semiconductor optical amplifier fiber ring laser and its linewidth characteristics," Opt. Lett., vol. 32, no. 24, pp. 3513-3515, December (2007).

  2006

[344] M. Nakazawa and T. Hirooka, gABCD matrix formalism of time-domain optical Fourier transformation for distortion-free pulse transmission,h IEICE Electron. Express, vol. 3, no. 4, pp. 74-79, February (2006).

[345] H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, g10 Gb/s transmission over 5 km at 850 nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD,h IEICE Electron. Express, vol. 3, no.6, pp. 109-114, March (2006).

[346] M. Nakazawa, S. Nakahara, T. Hirooka, M. Yoshida, T. Kaino, and K. Komatsu, gPolymer saturable absorber materials in the 1.5 μm band using poly-methyl-methacrylate and polystyrene with single-wall carbon nanotubes and their application to a femtosecond laser,h Opt. Lett., vol. 31, no. 7, pp. 915-917, April (2006).

[347] M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, g20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilised laser,h Electron. Lett., vol. 42, no. 12, pp. 710-712, June (2006).

[348] H. Inaba, Y. Daimon, F. -L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, gLong-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,h Opt. Express, vol. 14, no. 12, pp. 5223-5231, June (2006).

[349] T. Hirooka and M. Nakazawa, gOptical adaptive equalization of high-speed signals using time-domain optical Fourier transformation,h Invited paper, J. Lightwave Technol., vol. 24, no. 7, pp. 2530-2540, July (2006).

[350] Y. Oikawa, H. Hasegawa, T. Hirooka, M.Yoshida, and M. Nakazawa, "Ultra-broadband dispersion measurement of photonic crystal fiber with pico-second streak camera and group-delay-frees supercontinuum," IEICE Trans. Electron. (in Japanese), vol. J89-C, no. 7, pp. 450-457, July (2006).

[351] T. Hirooka, T. Kumakura, K. Osawa, and M. Nakazawa, gComparison of 40 GHz optical demultiplexers using SMZ switch and EA modulator in 160 Gbit/s-500 km OTDM transmission,h IEICE Electronics Express, vol. 3, no. 17, pp. 397-403, September (2006).

[352] M. Nakazawa and T. Hirooka, "Recent progress and future prospects for high-speed optical transmission technology using an ultrashort optical pulse train," Invited paper, IEICE Trans. Comm.(in Japanese), vol. J89-B, no. 11, pp. 2067-2081, November (2006).

[353] K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, gPerformance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,h IEICE Electron. Express, vol.3, no. 22, pp. 487-492, November (2006).

[354] A. Suzuki, Y. Takahashi, and M. Nakazawa, gA polarization-maintained, ultranarrow FBG filter with a linewidth of 1.3 GHz,h IEICE Electron. Express, vol. 3, no. 22, pp. 469-473, November (2006).

[355] T. Hirooka, K. Hagiuda, T. Kumakura, K. Osawa, and M. Nakazawa, g160 Gb/s-600 km OTDM transmission using time-domain optical Fourier transformation,h IEEE Photon. Technol. Lett., vol. 18, no. 24, pp. 2647-2649, December (2006).

  2005

[332] M. Nakazawa and T. Hirooka, gDistortion-free transmission of ultrashort optical pulses using time-domain optical Fourier transformation,h Japanese Journal of Optics (in Japanese), vol. 34, no. 1, pp. 26-31, January (2005).

[333] T. Hirooka, S. Ono, K. Hagiuda, and M. Nakazawa, gStimulated Brillouin scattering in dispersion-decreasing fiber with ultrahigh-speed femtosecond soliton pulse compression,h Opt. Lett., vol. 30, no. 4, pp. 364-366, Feb. (2005).

[334] K. Haneda, M. Yoshida, H. Yokoyama, Y. Ogawa, and M. Nakazawa, "Measurements of longitudinal linewidth and relative intensity noise in ultrahigh-speed mode-locked semiconductor lasers, " IEICE Trans. Electron., vol. J88-C, no. 3, pp. 161-168, March (2005).

[335] K. Hagiuda, T. Hirooka, M. Nakazawa, S. Arahira, and Y. Ogawa, g40-GHz, 100-fs stimulated-Br/p>llouin-scattering-free pulse generation by combining a mode-locked laser diode and a dispersion-decreasing fiber,h Opt. Lett., vol. 30, no. 6, pp. 670-672, March (2005).

[336] K. Haneda, M. Yoshida, M. Nakazawa, H. Yokoyama, and Y. Ogawa, gLinewidth and relative intensity noise measurements of longitudinal modes in ultrahigh-speed mode-locked laser diodes,h Opt. Lett., vol. 30, no. 9, pp. 1000-1002, May (2005).

[337] M. Yakabe, K. Nito, M. Yoshida, M. Nakazawa, Y. Koga, K. Hagimoto, and T. Ikegami, gUltrastable cesium atomic clock with a 9.1926-GHz regeneratively mode-locked fiber laser,h Opt. Lett., vol. 30, no. 12, pp. 1512-1514, June (2005).

[338] H. Hasegawa, T. Hirooka, and M. Nakazawa, gA new method for optimum dispersion designing of zero-dispersion and dispersion-flattened photonic crystal fibers,hIEICE Trans. Electron. (in Japanese), vol. J88-C, no. 7, pp. 519-527, July (2005).

[339] T. Hirooka, M. Nakazawa, F. Futami, and S. Watanabe,gUltrahigh-speed distortion-free optical pulse transmission using time-domain optical Fourier transformation,hIEICE Trans. Comm. (in Japanese), vol. J88-B, no. 8, pp. 1402-1410, August (2005).

[340] M. Nakazawa and T. Hirooka, gDistortion-free optical transmission using time-domain optical Fourier transformation and transform-limited optical pulses,h J. Opt. Soc. Am. B, vol. 22, no. 9, pp. 1842-1855, September (2005).

[341] M. Yakabe, K. Nito, M. Yoshida, and M. Nakazawa, "Microwave frequency tuning characteristics of an opto-microwave oscillator made of fiber laser and its application to Ramsey fringe observation of Cs atoms," IEICE Trans. Comm., vol. J88-B, no. 9, pp. 1829-1836, September (2005).

[342] K. Kasai, M. Yoshida, and M. Nakazawa, "Acetylene (13C2H2) stabilized single-polarization fiber laser," IEICE Trans. Electron., vol. J88-C, no. 9, pp. 708-715, September (2005).

[343] H. Hasegawa, M. Kikegawa, M. Yoshida, T. Hirooka, and M. Nakazawa, "Observation of optimum air-hole tapering of splicing between a conventional fiber and a photonic crystal fiber and analysis of reduction of Fresnel reflection," IEICE Trans. Electron., vol. J88-C, no. 10, pp. 779-787, October (2005).

  2004

[326] T. Hirooka and M. Nakazawa, "Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion, " Opt. Lett., vol. 29, no. 5, pp. 498-500, March (2004).

[327] M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, "Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses, " IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1059-1061, April (2004).

[328] T. Hirooka, Y. Hori, and M. Nakazawa, "Gaussian and sech approximations of mode field profiles in photonic crystal fibers, " IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1071-1073, April (2004).

[329] M. Yoshida, T. Yaguchi, S. Harada, and M. Nakazawa, "A 40 GHz regeneratively and harmonically mode-locked erbium-doped fiber laser and its longitudinal-mode characteristics, " IEICE Trans. Electron., vol. E87-C, no. 7, pp. 1166-1172, July (2004).

[330] T. Hirooka, M. Nakazawa, F. Futami, and S. Watanabe, "A new adaptive equalization scheme for 160 Gbit/s transmitted signals using time-domain optical Fourier transformation, " IEEE Photon. Technol. Lett., vol. 16, no. 10, pp. 2371-2373, October (2004).

[331] M. Nakazawa, " Photonic crystal fibers and their applications, " Japanese Journal of Applied Physics (Ouyou-Butsuri, in Japanese), vol. 73, no. 11, pp. 1409-1417, November (2004).

  2003

[320] M. Nakazawa, gOptical amplifiers and their application to fiber lasers,h Japanese Journal of Optics (in Japanese), vol. 32, no. 2, pp. 119-128, February (2003).

[321] M. Nakazawa, gHigh precision frequency standards using mode-locked fiber lasers,h The Review of Laser Engineering, vol. 31, no. 7, pp. 443-449, July (2003).

[322] M. Nakazawa, gUltrafast OTDM transmission technology,h Journal of IEICE (in Japanese), vol. 86, no. 8, pp. 588-593, August (2003).

[323] M. Yoshida, M. Kikegawa, N. Nishimura, and M. Nakazawa, gObservation of huge Fresnel reflection at a splicing point between a photonic crystal fiber and a conventional fiber and its suppression,h IEICE Trans. Electron. (in Japanese), vol. J86-C, no. 9, pp. 1007-1016, September (2003).

[324] S. Choi, M. Yoshida, and M. Nakazawa, gMeasurements of longitudinal linewidths of 10 GHz, picosecond mode-locked erbium-doped fiber lasers using a heterodyne detection method,h IEICE Trans. Electron. (in Japanese), vol. J86-C, no. 10, pp. 1054-1062, October (2003).

[325] M. Nakazawa, gPhotonic crystal fibers and their application to ultrashort pulse propagation,h Japanese Journal of Optics (in Japanese), vol. 32, no. 10, pp. 606-612, October (2003).

  2002

[316] M. Nakazawa, T. Yamamoto, and K. R. Tamura, "Ultrahigh-speed OTDM transmission beyond 1 Tera bit-per-second using a femtosecond pulse train," IEICE Trans. Electron., vol. E85-C, no. 1, pp. 117-125 January (2002).

[317] T. Inui, T. Komukai, M. Nakazawa, K. Suzuki, K. R. Tamura, K. Uchiyama, and T. Morioka, gAdaptive dispersion slope equalizer using a nonlinearly chirped fiber Bragg grating pair with a novel dispersion detection technique,h IEEE Photon. Technol. Lett., vol. 14, no. 4, pp. 549-551, April (2002).

[318] M. Nakazawa, gPhotonic crystal fibers,h The Review of Laser Engineering, vol. 30, no. 8, pp. 426-434, August (2002).

[319] H. Inaba, A. Onae, Y. Akimoto, T. Komukai, and M. Nakazawa, gObservation of acetylene molecular absorption line with tunable, single-frequency, and mode-hop-free erbium-doped fiber ring laser,h IEEE J. Quantum Electron., vol. 38, no. 10, pp. 1325-1330, October (2002).

  2001

[302] A. Sahara, T. Komukai, E. Yamada and M. Nakazawa, " 40 Gbit/s return-to-zero transmission over 500 km of standard fibre using chirped fibre Bragg grating with small group delay ripples," Electron. Lett., vol. 37, pp. 8-9, January (2001).

[303]S. Yagi, T. Maruyama, H. Nagai, T. Izawa, K. Washio, Y. Nagaki, K. Goto, M. Nakazawa, and T. Yuuzu, "Development of lasers in the 20th century and prospect in the future," The Review of Laser Engineering, vol. 29, no. 1, pp. 37-55 January (2001).

[304] S. Suzuki, Y. Kokubun, M. Nakazawa, T. Yamamoto, and S. T. Tak," Ultrashort optical pulse transmission characteristics of vertically coupled microring resonator add/drop filter," IEEE/OSA, J. Lightwave Technol., vol. 19, no.2, pp. 266-271, February (2001).

[305] T. Komukai, T. Inui, and M. Nakazawa, " Very low group delay ripple characteristics of fibre Bragg grating with chirp induced by an S-curve bending technique," Electron. Lett., vol. 37, no. 7, pp. 449-451, March (2001).

[306] T. Inui, T. Komukai, M. Nakazawa," Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers," Opt. Commun., vol. 190, pp. 1-4, April (2001).

[307] M. Nakazawa, A. Sahara, and H. Kubota," Propagation of a soliton-like nonlinear pulse in average normal group-velocity dispersion and its unsuitability for a high-speed, long-distance optical communication," J. Opt. Soc. Amer., vol. B-18, pp. 409-418, April (2001).

[308] T. Yamamoto and M. Nakazawa," Third- and fourth-order active dispersion compensation with a phase modulator in a terabit-per-second optical time-division multiplexed transmission," Opt. Lett., vol. 26, pp. 647-649, May (2001).

[309] M. Nakazawa and K. Suzuki, " Cesium optical atomic clock: an optical pulse that tells the time," Opt. Lett., vol. 26, pp. 635-637, May (2001).

[310] K. R. Tamura, and M Nakazawa, "A polarization-maintaining pedestal-free femtosecond pulse compressor incorporating an ultrafast dispersion-imbalanced nonlinear optical loop mirror," IEEE Photon. Technol. Lett., vol. 13, no. 5, pp. 526-528, May (2001).

[311] K. R. Tamura and M. Nakazawa, "54-fs, 10-GHz soliton generation from a polarization-maintaining dispersion-flattened dispersion-decreasing fiber pulse compressor," Opt. Lett., vol. 26, no.11, pp. 762-764, June (2001).

[312] S. Kawanishi, T. Yamamoto, M. Nakazawa, and M. M. Fejer, gHigh sensitivity waveform measurement with optical sampling using quasi-phasematched mixing in LiNbO3 waveguide,h Electron. Lett., vol. 37, no. 13, pp. 842-844, June (2001).

[313] T. Komukai, T. Inui, and M. Nakazawa, "Origin of group delay ripple in chirped fiber Bragg gratings and its effective reduction method," IEIEC of Japan, C, vol. J84-C, no.8, pp. 673-680, August (2001).

[314] T. Yamamoto, K. R. Tamura, and M. Nakazawa, "1.28 Tbit/s-70km OTDM femtosecond-pu1se transmission using third- and fourth-order simultaneous dispersion compensation with a phase modu1ator," IEIEC of Japan, B, vol. J84-B, no. 9, pp. 1587-1597, September (2001).

[315] K. R. Tamura, Y. Inoue, K. Sato, T. Komukai, A. Sugita, and M. Nakazawa, gA discretely tunable mode-locked laser with 32 wavelengths and 100-GHz channel spacing using an arrayed waveguide grating,h IEEE Photon. Technol. Lett., vol. 13, no. 11, pp. 1227-1229, November (2001).

  2000

[285] K. Suzuki, H. Kubota, A. Sahara, and M. Nakazawa, "640 Gbit/s (40 Gbit/s x 16 channel) dispersion-managed DWDM soliton transmission over 1,000 km with a spectral efficiency of 0.4 bit/Hz", Electron. Lett., vol. 36, No. 5, pp.443-445, March (2000).

[286] T. Yamamoto, E. Yoshida, K. Tamura, K. Yonenaga, and M. Nakazawa, "640 Gbit/s optical TDM transmission over 92 km through a dispersion-managed fiber consisting of single-mode fiber and "reverse dispersion fiber", IEEE Photon. Technol. Lett., Vol. 12, No. 3, pp. 353-355, March (2000).

[287] T. Komukai, T. Inui, and M. Nakazawa, "The design of dispersion equalizers using chirped fiber Bragg gratings", IEEE J. Quantum Electron., vol. 36, pp. 409-417, April (2000).

[288] M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada and A. Sahara," Ultrahigh-speed, long-distance TDM and WDM soliton transmission technologies," IEEE, J. Selected Topics in Quantum Electronics, vol. 6, no. 2, pp. 363-394, April (2000).

[289] T. Yamamoto, E. Yoshida, K. R. Tamura, and M. Nakazawa,"100 km transmission of 640 Gbit/s OTDM signal using femtosecond pulses," IEICE Trans. Commun. (in Japanese), Vol. J83-B No. 5, pp. 625-633, May (2000).

[290] K. R. Tamura, H. Kubota, and M. Nakazawa, " Fundamentals of stable continuum generation at high repetition rate," IEEE, J. Quantum Electron., vol. 36, No. 7, pp. 773-779, July (2000).

[291] H. Inaba, Y. Akimoto, K. Tamura, E. Yoshida, T. Komukai, and M. Nakazawa, " Experimental observation of mode behavior in erbium-doped optical fiber ring laser," Optics Commun., vol. 180, pp. 121-125, June(2000).

[292] A. Sahara, T. Inui, T. Komukai, H. Kubota, and M. Nakazawa, " 40-Gb/s RZ transmission over transoceanic distance in a dispersion managed standard fiber using a new inline synchronous modulation method," IEEE, Photon. Tech. Lett., vol. 12 No. 6, pp. 720-722, June (2000).

[293] T. Komukai, T. Inui, and M. Nakazawa, " Group delay ripple reduction and reflectivity increase in a chirped fiber Bragg grating by multiple-overwriting of a phase mask with an electron beam," IEEE, Photon. Tech. Lett., vol. 12, No. 7, July (2000).

[294] M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, " Recent progress in soliton transmission technology," American Inst. of Physics, Chaos (Invited paper), vol. 10, No. 3, pp. 486-514, September (2000).

[295] A. Sahara, T. Inui, T. Komukai, H. Kubota, and M. Nakazawa, " 40-Gb/s RZ transmission over transoceanic distance in a dispersion managed standard fiber using a modified inline synchronous modulation method," IEEE/OSA, J. Lightwave Technol., vol. 18, No. 10, pp. 1364-1373, October (2000).

[296] H. Kubota and M. Nakazawa, " Simulation method for optical soliton pulse propagation," J. of IEICE (in Japanese), vol. 83, No. 11, pp. 866-871, November (2000).

[297] H. Kubota, K. Tamura, and M. Nakazawa, " Effect of ASE noise on coherence for supercontinuum light source by soliton compression," IEICE Trans. Electron. (in Japanese), vol. J83-C, No. 11, pp. 1005-1011, November (2000).

[298] M. Nakazawa, T. Yamamoto, K. R. Tamura, " 1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator," Electron., Lett., vol. 36, No. 24, pp. 2027-2029, November (2000).

[299] M. Nakazawa and E.Yoshida," A 40 GHz, 850 fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser," IEEE, Photon. Tech. Lett.,, vol. 12, No. 12, pp. 1613-1615 December(2000).

[300] T. Inui, T. Komukai, and M. Nakazawa, " A wavelength-tunable Dispersion equalizer using a nonlinearly chirped fiber Bragg grating pair mounted on multilayer piezoelectric transducer," Photon. Tech. Lett., vol. 12, pp. 1668-1670, December (2000).

[301] M. Nakazawa," Solitons for breaking barriers to terabit/second WDM and OTDM transmission in the next Millennium," IEEE, J, Selected Topics in Quantum Electronics (Millennium Issue invited paper), vol. 6, No. 6, pp. 1332-1343, November/December(2000).

  1999

[265] A. Sahara, H. Kubota, and M. Nakazawa, "Ultra-high speed soliton transmission in presence of polarisation mode dispersion using in-line synchronous modulation," Electron. Lett., vol. 35, pp. 76-77, January (1999).

[266] Y. Yamabayashi, M. Nakazawa, and K. Takiguchi," Terabit transmission technologies," NTT R&D Journal Special Issue on Challenges to Terabit/s Communication Technologies (In Japanese), vol. 48, pp. 43-58, January (1999).

[267] M. Nakazawa, "Mode-locked fiber laser technology for ultrahigh-speed TDM optical transmission," NTT R&D Journal Special Issue on Challenges to Terabit/s Communication Technologies (In Japanese), vol. 48, pp. 59-66, January (1999).

[268] M. Nakazawa, K. Suzuki and H. Kubota," Single-channel 80 Gbit/s soliotn transmission over 10000 km using in-line synchronous modulation," Electron. Lett., vol. 35, pp. 162-163, January (1999).

[269] K. R. Tamura, and M. Nakazawa," Spectral-smoothing and pedestal reduction of wavelength tunable quasi-adiabatically compressed femtosecond solitons using a dispersion-flattened dispersion-imbalanced loop mirror," IEEE, Photon. Tech. Lett., vol. 11, pp.230-233, February (1999).

[270] A. Sahara, H. Kubota, and M. Nakazawa," Comparison of the dispersion allocated WDM (10 Gbit/sx 10 channels) optical soliton and NRZ systems using a Q map," Opt. Commun., vol. 160, pp. 139-145, February (1999).

[271] M. Nakazawa, H. Kubota, and K. Tamura," Random evolution and coherence degradation of a high-order optical soliton train in the presence of noise," Opt. Lett., vol. 24, pp. 318-320, March (1999).

[272] K. R. Tamura and M. Nakazawa," Femtosecond soliton generation over 32-nm wavelength range using a dispersion-flattened dispersion-decreasing fiber," IEEE, Photon. Tech. Lett., vol. 11, pp. 319-321, March (1999).

[273] T. Yamamoto, E. Yoshida, and M. Nakazawa," Demultiplexing of subterabit TDM signal by using ultrafast nonlinear optical loop mirror," IEICE Trans. Electron., C-I (In Japanese), vol. J82, pp. 109-116, March (1999).

[274] Y. Yamabayashi, H. Toba, and M. Nakazawa," State-of-the-art and future perspectives of time division multiplexing (TDM) high bit rate optical transmission," The Review of Laser Engineering (In Japanese), vol. 27, pp. 231-239, April(1999).

[275] K. Suzuki, H. Kubota, E. Yamada, A. Sahara, and M. Nakazawa," 40 Gbit/s soliton transmission field experiment using dispersion management," The Review of Laser Engineering (In Japanese), vol. 27, pp. 268-273, April (1999).

[276] E. Yoshida and M. Nakazawa," Ultrashort pulse generation at high repetition rate from mode-locked fiber lasers," The Review of Laser Engineering (In Japanese), vol. 27, pp. 274-280, April (1999).

[277] E. Yamada, T. Imai, T. Komukai, and M. Nakazawa," 10 Gbit/s soliton transmission over 2900 km using 1.3 m‚singlemode fibres and dispersion compensation using chirped fibre Bragg gratings," Electron. Lett., vol. 35, pp. 728-729, April (1999).

[278] E. Yoshida and M. Nakazawa," Measurement of the timing jitter and pulse energy fluctuation of a PLL regeneratively mode-locked fiber laser," IEEE Photonics Tech. Lett., vol. 11, pp. 548-550, May (1999)

[279] T. Komukai, T. Imai, M. Nakazawa," Design of dispersion equalizers using chirped Bragg gratings," IEICE Trans. Electron. (In Japanese), Vol. J82-C-I, pp. 359-369, June (1999).

[280] M. Nakazawa, K Suzuki, and H. Kubota, "160 Gbit/s (80 Gbit/s x 2 channels) WDM soliton transmission over 10,000 km using in-line synchronous modulation", Electron. Lett., vol. 35, No. 16, pp. 1358-1359, September (1999).

[281] K. Tamura, T. Komukai, and M. Nakazawa, "A new optical routing technique with a subcarrier clock controlled wavelength converter", IEEE Photon. Technol. Lett., vol. 11, No. 11, pp. 1491-1493, November (1999).

[282] E. Yoshida, K Tamura, and M. Nakazawa," Mode-locked fiber ring lasers," The Review of Laser Engineering (In Japanese), vol. 27, No.11, pp. 756-761, November (1999).

[283] H. Kubota, K. Tamura, and M. Nakazawa, "Analyses of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction", J. Opt. Soc. Am. B, vol. 16, No. 12, pp. 2223-2232, December (1999).

[284] E. Yoshida, N. Shimizu, and M. Nakazawa, "A 40 GHz, 0.9 ps regeneratively mode-locked fiber laser with a tuning range of 1530 - 1560 nm", IEEE Photon. Technol. Lett., vol. 11, No. 12, pp.1587-1589, December (1999).

  1998

[246] M. Nakazawa, K. Suzuki, H. Kubota, A. Sahara, and E. Yamada," 160 Gbit/s WDM (20 Gbit/s x 8 channels) soliton transmission over 10000 km using in-line synchronous modulation and optical filtering," Electron. Lett., vol. 34, No. 1, pp. 103-104, January (1998).

[247] K. Suzuki, H. Kubota, A. Sahara and M. Nakazawa,"40Gbit/s single channel optical soliton transmission over 70000 km using in-line synchronous modulation and optical filtering," Electron. Lett., vol. 34, No. 1, pp. 98-99, January (1998).

[248] K. Tamura, E. Yoshida, and M. Nakazawa," Forced phase modulation and self phase modulation effects in dispersion-tuned mode-locked fiber lasers," IEICE Trans. Electron., vol. E81-C, No. 2, pp. 195-200, February (1998).

[249] E. Yoshida, K. Tamura, and M. Nakazawa," Intracavity dispersion effects of a regeneratively and harmonically FM mode-locked erbium-doped fiber laser," IEICE Trans. Electron., vol. E81-C, No. 2, pp. 189-194, February (1998).

[250] T. Yamamoto, and M. Nakazawa," Efficient optical pulse compression with optical gain via four-wave mixing," IEICE Trans. Electron., C-I, vol. J81-C-I, No. 3, pp. 148-157, March (1998).

[251] T. Komukai, and M. Nakazawa," Long-phase error-free fiber Bragg gratings," IEEE, Photon. Tech. Lett., vol. 10, No. 5, pp. 687-689, May (1998).

[252] M. Nakazawa, E. Yoshida, T. Yamamoto, and A. Sahara," TDM single channel 640 Gbit/s transmission experiment over 60 km using 400 fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror," Electron. Lett., vol. 34, No. 9, pp. 907-908, April (1998).

[253] T. Yamamoto, E. Yoshida, and M. Nakazawa," Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals," Electron. Lett., vol. 34, No. 10, pp. 1013-1014, May (1998).

[254] E. Yoshida, T. Yamamoto, A. Sahara, and M. Nakazawa," 320 Gbit/s TDM transmission over 120 km using 400 fs pulse train," Electron. Lett., vol. 34, No. 10, pp. 1004-1005, April (1998).

[255] T. Imai, T. Komukai, and M. Nakazawa," Dispersion tuning of a linearly chirped fiber Bragg grating without a center wavelength shift by applying a strain gradient," IEEE, Photon. Tech. Lett., vol. 10, No. 6, pp. 845-847, June (1998).

[256] M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida," Coherence degradation in the process of supercontinuum generation in an optical fiber," Optical Fiber Technology, 4, pp.215-223, April, (1998)

[257] M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura," Time-domain ABCD matrix formalism for laser mode-locking and optical pulse transmission," IEEE J. Quantum Electron., vol. 34, No. 7, pp. 1075-1081, July (1998).

[258] H. Inaba, Y. Akimoto, K. Tamura, E Yoshida, T. Komukai, and M. Nakazawa," A single-frequency and single-polarization fiber ring laser using a 5 GHz fiber Bragg grating," IEICE Trans. Electron., C-I, vol. J81-C-I, No. 8, pp. 451-459, August (1998).

[259] E. Yoshida and M. Nakazawa," Wavelength tunable 1.0 ps pulse generation in 1.530-1.555 μm region from PLL, regeneratively modelocked fibre laser," Electron. Lett., vol. 34, No. 18, pp 1753-1754, September (1998).

[260] T. Komukai and M. Nakazawa, "Fabrication of non-linearly chirped fiber gratings for higher-order dispersion compensation," Opt. Commun., vol. 154, pp. 5-8 (1998)

[261] K. Tamura and M. Nakazawa, "Timing jitter of solitons compressed in dispersion-decreasing fibers," Opt. Lett., vol. 23, No. 17, pp. 1360-1362, September (1998).

[262] A. Sahara, K. Suzuki, H. Kubota, T. Komukai, E. Yamada, T. Imai, K. Tamura and M. Nakazawa," Single channel 40 Gbit/s soliton transmission field experiment over 1000 km in Tokyo metropolitan optical loop network using dispersion compensation," Electron. Lett., vol. 34, pp. 2154-2155, October (1998).

[263] K. Suzuki, H. Kubota, T. Komukai, E. Yamada, T. Imai, K. Tamura, A. Sahara and M. Nakazawa," 40 Gbit/s soliton transmission field experiment over 1360 km using in-line soliton control," Electron. Lett., vol. 34, pp. 2143-2144, October (1998).

[264] T. Imai, T. Komukai, and M. Nakazawa, "Second- and third-order dispersion compensation of picosecond pulses achieved by combining two nonlinearly chirped fibre Bragg gratings," Electron. Lett., vol. 34, pp. 2422-2423, December (1998).

  1997

[228] T. Komukai, T. Yamamoto, T. Imai, and M. Nakazawa," Application of fiber Bragg gratings to spectral filtering," IEICE Trans. Electron., C-I, Vol. J80-C-I, No.1, pp. 32-40, January (1997).

[229] T. Imai and M. Nakazawa," Optical cable amplifier," The Laser Society of Japan, Rev. of Laser Eng., vol. 25, pp. 121-125 February (1997).

[230] E. Yoshida, K. Tamura, E. Yamada, and M. Nakazawa," Femtosecond fiber laser at 10 GHz and its application as a multi-wavelength optical pulse source," IEICE Trans. Electron., C-I, vol. J80-C-I, No. 2, pp. 70-77, February (1997).

[231] T. Yamamoto and M. Nakazawa," Highly efficient four-wave mixing in an optical fiber with intensity dependent phase matching," IEEE, Photon.Tech. Lett., vol. 9, No.3, pp. 327-329, March (1997).

[232] M. Nakazawa, A. Sahara, and H. Kubota," Marked increase in the power margin through the use of dispersion-allocated soliton and evaluation of transmission characteristics using Q mapping---Comparison between D-A soliton, NRZ pulse and RZ pulse at zero GVD---," IEICE Trans. Commun., B-I, vol. J80-B-I, N. 3, pp. 148-158, March (1997).

[233] E. Yamada, H. Kubota, T. Yamamoto, A. Sahara, and M. Nakazawa," 10 Gbit/s, 10,600 km, dispersion-allocated soliton transmission using conventional 1.3 μm singlemode fibers," Electron. Lett., vol. 33, No. 7, pp. 602-603, March (1997).

[234] T. Yamamoto, T. Imai, T. Komukai, and M. Nakazawa," Demutliplexing and routing of TDM signal using wavelength conversion by fiber four-wave mixing and wavelength routing by fiber gratings," IEICE Trans. Electron., C-I, vol. J80-C-I, No. 5, pp. 186-194, May (1997).

[235] T. Imai, T. Komukai, T. Yamamoto, and M. Nakazawa," Wavelength tunable Q-switched fiber laser using fiber Bragg gratings," IEICE Trans. Electron., C-I, Vol. J80-C-I, No. 5, pp. 195-203, May (1997).

[236] A. Sahara, H. Kubota, and M. Nakazawa," Experiments and analyses of 20 Gbit/s soliton transmission systems using installed optical fiber cables," IEICE Trans. Electron., C-I, vol. J80-C-I, No. 5, pp. 204-212, May (1997).

[237] M. Nakazawa, K. Suzuki, H. Kubota, A. Sahara, and E. Yamada,"100 Gbit/s WDM (20 Gbit/sx5 channels) soliton transmission over 10,000 km using in-line synchronous modulation and optical filtering," Electron. Lett., vol. 33, No. 14, pp. 1233- 1234, July (1997).

[238] M. Nakazawa and E. Yoshida and K. Tamura," Ideal phase-locked-loop (PLL) operation of a 10 GHz erbium-doped fibre laser using regenerative modelocking as an optical voltage controlled oscillator," Electron. Lett., vol. 33, No. 15, pp. 1318-1319, July(1997).

[239] T. Komukai, K. Tamura, and M. Nakazawa," An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering," IEEE, Photon. Tech. Lett., vol. 9, No. 7, pp. 934-936, July (1997).

[240] A. Sahara, H. Kubota, and M. Nakazawa, "Optimum fiber dispersion for two-step dispersion-allocated optical soliton, RZ at zero GVD and NRZ systems," IEEE, Photon. Tech. Lett., vol. 9, No. 8, pp. 1179-1181, Aug., (1997).

[241] M. Nakazawa, E. Yamada, H. Kubota, T. Yamamoto, and A. Sahara," Numerical and experimental comparison of soliton, RZ pulse and NRZ pulses under two-step dispersion allocation," Electron. Lett., vol. 33, No. 17, pp. 1480-1482, Aug., (1997).

[242] M. Nakazawa, "Advantages of dispersion-allocated soliton by comparison with conventional NRZ and RZ pulse transmission at zero GVD," TOPS, OSA, vol. 12, System Technologies, pp. 299-304, (1997).

[243] M. Nakazawa," Recent progress in optical soliton communication and its future prospects-Analogy between optical pulse transmission and laser mode-locking," Journal of Applied Physics (In Japanese, Ouyou-Butsuri), vo. 66, no. 9, pp. 922-932 (1997).

[244] E. Yoshida and M. Nakazawa," Low-threshold 115-GHz continuous-wave modulational-instability erbium-doped fiber laser," Opt. Lett., vol. 22, No. 18, pp. 1409-1411, September (1997).

[245] T. Yamamoto and M. Nakazawa," Active optical pulse compression with a gain of 29.0 dB by using four-wave mixing in an optical fiber," IEEE, Photon. Tech. Lett., vol. 9, No. 12, pp. 1595-1597, December (1997).

  1996

[204] K. Tamura and M. Nakazawa, "Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium - doped fiber amplifiers", Opt. Lett., vol. 21, No. 1, pp. 68-70, Jan., (1996).

[205] M. Nakazawa," Telecommunications-Rides a New Wave," Photonics Spectra, Feb., pp. 97-104, (1996).

[206] M. Nakazawa, K. Tamura, and E. Yoshida, " Supermode noise suppression in a harmonically modelocked fibre laser by selfphase modulation and spectral filtering," Electron. Lett., vol. 32, Feb., pp. 461-462, (1996).

[207] M. Nakazawa, H. Kubota, and K. Tamura, "Nonlinear pulse transmission through an optical fiber at zero-average group velocity dispersion," IEEE, Photon. Tech. Lett., vol. 8, No. 3, March, pp. 452-454, (1996).

[208] M. Nakazawa," Recent progress in ultra-high speed optical soliton communication," J. of IEICE, vol. 79, No. 3, March, pp. 259-271, (1996).

[209] M. Nakazawa, K. Suzuki, H. Kubota, Y. Kimura, E. Yamada, K. Tamura, T. Komukai, and T. Imai,"40 Gbit/s WDM(10 Gbit/sx4 unequally spaced channels) soliton transmission over 10000 km using synchronouos modulation and narrow band optical filtering," Electron. Lett., vol. 32, No. 9, April, pp. 828-829, (1996).

[210] K. Tamura, E. Yoshida, E. Yamada, and M. Nakazawa," Generation of a 0.5 W average power train of femtosecond pulses at 10 GHz in the 1.55 μm region" Electron.Lett., vol . 32, pp. 835-836 April (1996).

[211] K. Tamura, E. Yoshida, and M. Nakazawa," Generation of 10 GHz pulse trains at 16 wavelengths by spectrally slicing a high power femtosecond source, " Electron. Lett., vol. 32, No. 18, pp. 1691-1692, April (1996).

[212] A. Sahara, H. Kubota, and M. Nakazawa," Q-factor contour mapping for evaluation of optical transmission systems:soliton against NRZ against RZ pulse at zero group velocity dispersion," Electron. Lett., vol. 32, May, pp. 915-916, (1996).

[213] M. Nakazawa, E. Yoshida, E. Yamada, and Y. Kimura," A repetition-rate stabilized and tunable, regeneratively mode-locked fiber laser using an offset-locking technique," Jpn. J. Appl. Phys., vol. 35, June, pp. L691-694, (1996).

[214] M. Nakazawa, "Recent progress in long-distance soliton communication," Laser Society of Japan, Rev. of Laser Eng., vol. 24, No. 6, June, pp. 633-640 (1996).

[215] M. Nakazawa, K. Suzuki, and E. Yamada, "NOLM oscillator and its injection locking technique for timing clock extraction and demutiplexing," Electron. Lett., vol. 32, No. 12, pp. 1122-1123, June (1996).

[216] M. Nakazawa, E. Yoshida, and K. Tamura," 10 GHz, 2 ps regenratively and harmonically FM mode-locked erbium-fibre ring laser," Electron. Lett., vol. 32, No. 14, July, pp. 1285-1287, (1996).

[217] M. Nakazawa and E. Yoshida," Direct generation of a 750 fs, 10 GHz pulse train from a regeneratively mode-locked fibre laser with multiple harmonic modulation," Electron. Lett., vol. 32, No. 14, pp. 1291-1293, July (1996).

[218] E. Yoshida and M. Nakazawa," 80-200 GHz erbium-doped fibre laser using a rational harmonic mode-locking technique," Electron. Lett., vol. 32, No. 15, pp. 1371-1372, July (1996).

[219] M. Nakazawa, K. Suzuki, H. Kubota, and E. Yoshida," 60 Gbit/s WDM (20 Gbit/sx3 unequally spaced channels) soliton transmission over 10000 km using in-line synchronous modulation and optical filtering," Electron. Lett., vol. 32, No. 18 , pp. 1686-1687, August (1996).

[220] M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura," Marked increase in the power margin through the use of a dispersion allocated soliton," IEEE, Photon. Tech. Lett., vol. 8, No. 8, pp. 1088-1090, Aug., (1996).

[221] M. Nakazawa, H. Kubota, and E. Yamada," Generation and transmission of optical soliton pulses," IEICE Trans. Electron., C-II, vol. J79-C-II, No. 8, pp. 265-277, August (1996).

[222] K. Tamura, T. Komukai, and M. Nakazawa," Optimization of power extraction in a high-power soliton fiber ring laser containing a chirped fiber grating," Appl. Phys. Lett., vol. 69, No. 11 , pp. 1535-1537 Sept. (1996).

[223] T. Imai, T. Komukai, T. Yamamoto, and M. Nakazawa," A wavelength tunable Q-switched erbium-doped fiber laser with fiber Bragg grating mirrors," Jpn. J. Appl. Phys. vol. 35, No. 10A, pp. L1275-1277, October (1996).

[224] T. Komukai, and M. Nakazawa," Fabrication of high -quality long-fiber Bragg grating by monitoring 3.1 eV radiation (400 nm) from GeO2 defects," IEEE, Photon. Tech. Lett., vol. 8, No. 11, pp. 1495-1497, November (1996).

[225] K. Tamura and M. Nakazawa," Dispersion-tuned harmonically mode-locked fiber laser for self-synchronization to external clock," Opt. Lett., vol. 21, NO. 24, pp. 1984-1986, December (1996).

[226] K. Tamura and M. Nakazawa," Pulse energy equalization in harmonically FM mode-locked lasers with slow gain," Opt. Lett., vol. 21, No.23, pp. 1930-1932, December (1996).

[227] T. Komukai, T. Yamamoto, T. Imai, M. Nakazawa, "Fabrication of high quality fiber Bragg grating and its wavelength tuning", IEICE Trans. Electron., C-I, Vol. J79-C-I, No.11, pp. 413-419, November (1996)

  1995

[177] H. Kubota and M. Nakazawa, "Soliton Transmission Control for Ultra High Speed System", IEICE Trans. Electron., vol. E78-C, No. 1, pp. 5-11, Jan., (1995).

[178] T. Sugawa, K. Kurokawa, H. Kubota, and M. Nakazawa, "Polarization Dependence of Soliton Interactions in Femtosecond Soliton Transmission", IEICE Trans. Electron., vol. E78-C, No. 1, pp. 28-37, Jan., (1995).

[179] M. Nakazawa and H. Kubota, "Optical soliton communication in a positively and negatively dispersion-allocated optical fibre transmission line", Electron. Lett., vol. 31, No. 3, pp. 216-217, Feb., (1995).

[180] T. Komukai, Y. Miyajima, and M. Nakazawa, "An in-line optical band pass filter with fiber gratings and an optical circulator and its application to pulse compression", Jpn. J. Appl. Phys.,vol. 34, Feb., pp. L230-L232, (1995).

[181] T. Komukai, Y. Miyajima, and M. Nakazawa, "In-line fiber grating-type optical bandpass filter tuned by applying lateral stress", Jpn. J. Appl. Phys., vol. 34, March, pp. L306-308, (1995).

[182] E. Yoshida, Y. Kimura, and M. Nakazawa, "20 GHz, 1.8 ps Pulse Generation from a Regeneratively Mode-Locked Erbium-Doped Fibre Laser and its Femtosecond Pulse Compression", Electron. Lett., vol. 31, March, pp. 377-378, (1995).

[183] M. Nakazawa, K. Suzuki, E. Yoshida, T. Kitoh and M. Kawachi, "160 Gbit/s soliton data transmission over 200km", Electron. Lett., Vol. 31, No. 7, pp. 565 - 566, April., (1995).

[184] T. Yamamoto, T. Imai, T. Komukai, Y. Miyajima and M. Nakazawa, "Optical demultiplexing and routing of a TDM signal by using four - wave mixing and a novel wavelength router with optical circulators and fiber gratings", Electron. Lett., vol. 31, No. 9, pp. 744 - 745, Apr., (1995).

[185] M. Nakazawa, Y. Kimura, K. Suzuki, H. Kubota, T. Komukai, E. Yamada, T. Sugawa, E. Yoshida, T. Yamamoto, T. Imai, A. Sahara, H.Nakazawa, O.Yamauchi and M. Umezawa, "Field demonstration of soliton transmission at 10 Gbit/s over 2000 km in Tokyo metropolitan optical loop network", Electron. Lett., vol. 31, No. 12, pp. 992 - 993, June., (1995).

[186] M. Nakazawa and H. Kubota, "Construction of Dispersion - Allocated Soliton Transmission Line Using Conventional Dispersion - Shifted Nonsoliton Fibers", Jpn. J. Appl. Phys., vol. 34, Part 2, No.6A, pp. L681 - L683, June., (1995).

[187] K. Tamura, Y. Kimura and M. Nakazawa, "Femtosecond pulse generation over 82 nm wavelength span from passively modelocked erbium - doped fiber laser", Electron. Lett., vol. 31, No. 13, pp. 1062 - 1063, June., (1995).

[188] M. Nakazawa and K. Sizuki, "10Gbit/s pseudorandom dark soliton data transmission over 1200 km", Electron. Lett.,vol. 31, No. 13, pp. 1076 - 1077, June., (1995).

[189] M. Nakazawa and K. Suzuki, "Generation of a pseudorandom dark soliton data train and its coherent detection by one - bit - shifting with a Mach - Zehnder interferometer", Electron. Lett., Vol. 31, No. 13, pp. 1084 - 1085, June., (1995).

[190] T. Sugawa, H. Kubota and M. Nakazawa, "Polarization dependence of femtosecond soliton - soliton interactions in dispersion -shifted fiber", Opt. Lett., Vol. 20, No. 13, pp. 1453 - 1455, July, (1995).

[191] M. Nakazawa and H. Kubota, "Analyses of the Dispersion - Allocated Bright and Dark Solitons", Jpn. J. Appl. Phys., vol. 34, Part 2, No.7B, pp. L889 - L891, July., (1995).

[192] K. Tamura, E. Yoshida, T. Sugawa and M. Nakazawa, "Broadband light generation by femtosecond pulse amplification with stimulated Raman scattering in a high - power erbium - doped fiber amplifier", Opt. Lett., vol. 20, No. 15, pp. 1631 - 1633, Aug., (1995).

[193] E. Yamada, E. Yoshida, T. Kitoh and M. Nakazawa, "Generation of terabit per second optical data pulse train", Electron. Lett., vol. 31, No. 16, pp. 1342 - 1343, Aug., (1995).

[194] M. Nakazawa, Y. Kimura, K. Suzuki, H. Kubota, T. Komukai, E. Yamada, T. Sugawa, E. Yoshida, T. Yamamoto, T.Imai, A. Sahara, O.Yamauchi and M. Umezawa, "Soliton transmission at 20 Gbit/s over 2000 km in Tokyo metropolitan optical network", Electron. Lett., vol. 31, No. 17, pp. 1478 - 1479, Aug., (1995).

[195] K. Suzuki and M. Nakazawa, "Recent Progress in Optical Soliton Communication", Optical Fiber Technology, 1, pp.289 - 308, Aug., (1995)

[196] M. Nakazawa and Y. Kimura, "Optical cable amplifiers", Electron. Lett., vol. 31, No. 20, pp. 1744 - 1445, Sep., (1995).

[197] M. Nakazawa, A. Sahara, T. Imai, T. Yamamoto, E. Yamada and Y. Kimura, "A Novel Technique for Measuring Group Velocity Dispersion of an Installed Ultralong Fiber by Using Erbium - Doped Fiber Amplifiers", Jpn. J. Appl. Phys., vol. 34, Part 2, No.9A, pp. L1167 - L1169, Sep., (1995).

[198] T. Yamamoto, T. Imai, T. Komukai, Y. Miyajima and M. Nakazawa, "High speed optical path routing by using four - wave mixing and a wavelength router with fiber gratings and optical circulators", Optics Communications, 120 , pp.245 - 248, Nov., (1995).

[199] E. Yoshida, Y. Kimura and M. Nakazawa, "Ultrahigh Speed Picosecond - Femtosecond Fiber Lasers", Optoelectronics Devices and Technologies, vol. 10, No. 4, pp. 531 - 542, Sep., (1995).

[200] K. Tamura and M. Nakazawa, "Optimizing power extraction in stretched - pulse fiber ring lasers", Appl. Phys. Lett., Vol. 67, No. 25, pp.3691 - 3693, Dec., (1995).

[201] K. Tamura, T. Komukai, T. Yamamoto, T. Imai, E. Yoshida and M. Nakazawa, "High energy, sub - picosecond pulse compression at 10GHz using a fiber / fiber - grating pulse compressor", Electron. Lett., Vol. 31, No. 25, pp. 2194 - 2195, Dec., (1995).

[202] T. Komukai and M. Nakazawa, "Tunable single frequency erbium doped fiber ring lasers using fiber grating etalons", Jpn. J. Appl. Phys., vol. 34, Part 2, No. 6A, L679-L680, June, (1995)

[203] T. Komukai and M. Nakazawa, "Efficient fiber gratings formed on high NA dispersion-shifted fiber and dispersion-flattened fiber", Jpn. J. Appl. Phys., vol. 34, Part 2, No. 10A, L1286-L1287, October, (1995)

  1994

[164] K. Suzuki, E. Yamada, H. Kubota, and M. Nakazawa, "Optical soliton communication system using erbium-doped fiber amplifiers", Fiber Integ. Opt., vol. 13, No. 1, p. 45-64, Jan., (1994).

[165] M. Nakazawa, "Soliton Transmission in Telecommunication Networks," IEEE Communications Magazine, vol. 32, No. 3, pp. 34-41, March (1994).

[166] E. Yamada and M. Nakazawa, "Reduction of Amplified Spontaneous Emission from a Transmitted Soliton Signal Using a Nonlinear Amplifying Loop Mirror and a Nonlinear Optical Loop Mirror", IEEE J. Quantum Electron., vol. 30, No. 8, pp. 1842-1850, Aug., (1994).

[167] M. Nakazawa," Ultrahigh speed optical soliton communication," O plus E (in Japanese), Invited paper, No. 177, pp. 53-64, Aug., (1994).

[168] M. Nakazawa, K. Suzuki, H. Kubota, E. Yamada, and, Y. Kimura, "Straight-line soliton data transmission at 20 Gbit/s beyond Gordon-Haus limit", Electron. Lett., vol. 30, No. 16, pp. 1331-1332, Aug., (1994).

[169] K. Kurokawa, H. Kubota, and M. Nakazawa, "Femtosecond Soliton Interactions in a Distributed Erbium-Doped Fiber Amplifier", IEEE, J. Quantum Electron., vol. 30, pp. 2220-2226, Sep., (1994).

[170] M. Nakazawa, E. Yoshida, and Y. Kimura, "Ultrastable harmonically and regeneratively modelocked polarisation-maintaining erbium fibre ring laser", Electron. Lett., vol. 30, No. 19, pp. 1603-1604, Sep., (1994).

[171] E. Yoshida, Y. Kimura, and M. Nakazawa, "Femtosecond Erbium-Doped Fiber Laser with Nonlinear Poarization Rotation and Its Soliton Compression", Jpn. J. Appl. Phys., vol. 33, No. 10, Part 1, pp. 5779-5783, Oct., (1994).

[172] E. J. Greer, Y. Kimura, K. Suzuki, E. Yoshida, and M. Nakazawa, "Generation of 1.2 ps, 10 GHz pulse train from all-optically modelocked, erbium fibre ring laser with active nonlinear polarization rotation", Electron. Lett., vol. 30, No. 21, pp. 1764-1765, Oct., (1994).

[173] M. Nakazawa, E. Yoshida, E. Yamada, K. Suzuki, T. Kitoh, and M. Kawachi, "80 Gbit/s soliton data transmission over 500 km with unequal amplitude solitons for timing clock extraction", Electron. Lett., vol. 30, No. 21, pp. 1777-1778, Oct., (1994).

[174] E. Yamada, K. Suzuki, and M. Nakazawa, "Subpicosecond optical demultiplexing at 10 GHz with zero-dispersion, dispersion-flattened, nonlinear fibre loop mirror controlled by 500 fs gain-switched laser diode", Electron. Lett., vol. 30, No. 23, pp. 1966-1967, Nov., (1994).

[175] T. Sugawa, K. Kurokawa, H. Kubota, and M. Nakazawa, "Soliton self-frequency shift in orthogonally polarised femtosecond solitons", Electron. Lett., vol. 30, No. 23, pp. 1963-1964, Nov., (1994).

[176] M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, "Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 μm using a dispersion-decreasing, erbium-doped active soliton compressor", Electron. Lett., vol. 30, No. 24, pp. 2038-2040, Nov., (1994).

  1993

[148] M. Nakazawa, E. Yoshida, and Y. Kimura, "Generation of 98 fs optical pulses directly from an erbium-doped fiber ring laser at 1.57 μm", Electron. Lett., vol. 29, No. 1, pp. 63-64, Jan, (1993).

[149] Y. Kimura, and M. Nakazawa, "Gain characteristics of erbium-doped fiber amplifiers with high erbium concentration", Jpn. J. Appl. Phys., vol. 32, pp. 1120-1125, Mar, (1993).

[150] M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota, Y. Kimura and M. Takaya, "Experimental demonstration of soliton data transmission over unlimited distances with soliton control in time and frequency domains", Electron. Lett., vol. 29, No. 9, pp. 729-730, Apr., (1993).

[151] E. Yamada, K. Suzuki, and M. Nakazawa," Reduction of ASE noise from transmitted soliton signals with a nonlinear amplifying optical loop mirror," IEICE Trans. Electron. (in Japanese), vol. J76-C-I, No. 4, pp. 81-88, Apr., (1993).

[152] E. Yamada, K. Suzuki, H. Kubota, and M. Nakazawa, "Ultrahigh speed optical soliton communication using erbium-doped fiber amplifiers", IEICE Trasns. Commun. vol. E76-B, pp. 410-419, Apr., (1993).

[153] M. Nakazawa, K. Suzuki, H. Kubota and Y. Kimura, "Self-Q-switching and mode locking in a 1.53-μm fiber ring laser with saturable absorption in erbium-doped fiber at 4.2 K", Opt. Lett., vol. 18, No. 8, pp. 612-615, Apr., (1993).

[154] H. Kubota and M. Nakazawa," Soliton transmission control in time and frequency domains," IEICE Trans. Electron. (in Japanese),vol. J76-C-I, No. 5, pp. 147-157, May(1993).

[155] E. Yamada, K. Wakita and M. Nakazawa, "30 GHz pulse train generation from a multiquantum well electro-absorption intensity modulator", Electron. Lett., vol. 29, No. 10, pp. 845-846, May(1993).

[156] T. Sugawa, Yoshida, Y. Miyajima and M. Nakazawa, "1.6 ps pulse generation from a 1.3 μm Pr3+-doped fluoride fibre laser", Electron. Lett., vol. 29, No. 10, pp. 902-903, May(1993).

[157] M. Nakazawa, E. Yoshida, T. Sugawa and Y. Kimura, "Continuum suppressed, uniformly repetitive 136 fs pulse generation from an erbium-doped fiber laser with nonlinear polarisation rotation", Electron. Lett., vol. 29, No. 15, pp. 1327-1328, July (1993).

[158] H. Kubota and M. Nakazawa, "Soliton transmission control in time and frequency domains", IEEE J. Quantum Electron., vol. 29, No. 7, pp. 2189-2197, July (1993).

[159] M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota and Y. Kimura, "Straight-line soliton data transmission over 2000 km at 20 Gbit/s and 1000 km at 40 Gbit/s using erbium-doped fiber amplifiers", Electron. Lett., vol. 29, No. 16, pp. 1474-1475, Aug., (1993).

[160] E. Yoshida, Y. Kimura, and M. Nakazawa, "Femtosecond erbium-doped fiber lasers and a soliton compression technique", Jpn. J. Appl. Phys., vol. 32, pp. 3461-3466, Aug., (1993).

[161] M. Nakazawa, K. Suzuki, H. Kubota and Y. Kimura, "Active Q switching and mode locking in a 1.53-μm fiber ring laser with saturable absorption in erbium-doped fiber at 4.2 K", Opt. Lett., vol. 18, No. 18, pp. 1526-1528, Sep., (1993).

[162] H. Kubota and M. Nakazawa, "Soliton transmission with long amplifier spacing under soliton control", Electron. Lett., vol. 29, No. 20, pp. 1780-1781, Sep., (1993).

[163] M. Nakazawa and H. Kubota, "Physical interpretation of reduction of soliton interaction forces by bandwidth limited amplification", Electron. Lett., vol. 29, No. 2, pp. 226-227, Jan., (1993)

  1992

[132] M. Nakazawa, Y. Kimura, K. Kurokawa, and K. Suzuki, "Self-induced-transparency solitons in an erbium-doped fiber waveguide," Phys. Rev. A, vol. 45, pp. 23-26 (1992).

[133] H. Kubota and M. Nakazawa,"Partial soliton communication system," Opt. Commun., vol. 87, pp. 15-18 (1992).

[134] E. Yoshida, Y. Kimura, and M. Nakazawa," Laser diode-pumped femtosecond erbium-doped fiber laser with a sub-ring cavity for repetition rate control," Appl. Phys. Lett., vol. 60, pp. 932-934 (1992).

[135] M. Nakazawa, K. Suzuki, Y. Kimura, and H. Kubota, "Coherent p-pulse propagation with pulse breakup in an erbium-doped fiber waveguide amplifier," Phys. Rev., vol. 45, pp. 2682-2685 (1992).

[136] M. Nakazawa and H. Kubota," Physical interpretation of reduction of soliton interaction forces by bandwidth limited amplification," Electron. Lett., vol. 28, pp. 958-960 (1992).

[137] M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota and Y. Kimura," 10 Gbit/s, 1200 km error-free soliton data transmission using erbium-doped fibre amplifiers," Electron. Lett., vol. 28, pp. 817-818 (1992).

[138] M. Nakazawa, K. Suzuki, and E. Yamada," 20 Gbit/s, 1020 km penalty-free soliton data transmission using erbium-doped fibre amplifiers," Electron. Lett., vol. 28, pp. 1046-1047 (1992).

[139] M. Nakazawa, H. Kubota, E. Yamada, and K. Suzuki," Infinite-distance soliton transmission with soliton controls in time and frequency domains," Electron. Lett., vol. 28, pp. 1099-1100 (1992).

[140] K. Kurokawa and M. Nakazawa," Femtosecond soliton transmission characteristics in an ultralong erbium-doped fiber amplifier with different pumping configuration," IEEE, J. Quantum Electron. vol. QE-28, pp. 1922-1929 (1992).

[141] Y. Kimura and M. Nakazawa," Gain characteristics of erbium-doped fibre amplifiers with high erbium concentration," Electron. Lett., vol. 28, pp. 1420-1421 (1992).

[142] M. Nakazawa, Y. Kimura, and K. Suzuki," Self induced transparency soliton and coherent ƒÎ pulse propagation in erbium-doped fibers and amplifiers," Review of Laser Eng. (in Japanese), vol. 20, No. 8, pp. 638-652 (1992).

[143] K. Suzuki, H. Kubota, and M. Nakazawa, "Soliton communication using erbium-doped fiber amplifiers," Review of Laser Eng. (in Japanese), Vol. 20, No. 8, pp. 662-672 (1992).

[144] E. Yoshida, Y. Kimura, and M. Nakazawa," Femtosecond erbium fiber laser with a nonlinear amplifying loop mirror pumped by laser diodes and the repetition rate control of output pulses," IECE of Japan (in Japanese),vol. J75-C-I, No.10, pp. 613-621 (1992).

[145] K. Kurokawa, H. Kubota, and M. Nakazawa, "Soliton self-frequency shift accelerated by femtosecond soliton interaction", Electron Lett., vol. 28, No. 22, pp. 2052-2053 (1992).

[146] M. Nakazawa and Y. Kimura, "Electron-beam vapour-deposited erbium-doped glass waveguide laser at 1.53 μm", Electron. Lett., vol. 28, No. 22, pp. 2054-2055, Oct., (1992)

[147] K. Kurokawa, H. Kubota and M. Nakazawa, "Significant modification of femtosecond soliton interaction in gain medium by small subpulses", Electron. Lett., vol. 28, No. 25, pp. 2334-2335, Dec., (1992)

  1991

[114] Y. Kimura, K. Suzuki, and M. Nakazawa," Noise figure characteristics of Er3+-doped fibre amplifier pumped in 0.8 μm band," Electron. Lett., vol. 27, pp. 146-147(1991).

[115] E. Yamada and M. Nakazawa, "Automatic intensity control of an optical transmission line using enhanced gain saturation in cascaded optical amplifiers," IEEE, J. Quantum Electron., vol. QE-27, pp. 146-151 (1991).

[116] M. Nakazawa, H. Kubota, K. Kurokawa, and E. Yamada," Femtosecond optical soliton transmission over long distances using adiabatic trapping and soliton standardization," J. Opt. Soc. Amer., B, vol. 8, pp. 1811-1817 (1991).

[117] H. Kubota and M. Nakazawa,"Recent progress on optical soliton communication," IEICE Transactions, Invited Paper, vol. E-74, pp. 1373-1378 (1991).

[118] K. Kurokawa and M. Nakazawa, "Wavelength-dependent amplification characteristics of femtosecond erbium-doped fiber amplifiers," Appl. Phys. Lett., vol. 58, pp. 2871-2873 (1991).

[119] E. Yamada, K. Suzuki, and M. Nakazawa, "Stabilization of optical output power using gain saturation of EDFA and its application to soliton communication," Trans. IECE (in Japanese), vol. J74-C-I, pp. 167-175 (1991).

[120] M. Nakazawa, E. Yamada, and H. Kubota,"Coexistence of self-induced transparency soliton and nonlinear Schršdinger soliton," Phys. Rev. Lett., vol. 66, pp. 2625-2628 (1991).

[121] M. Nakazawa and Y. Kimura," Lanthanum codoped erbium fibre amplifier," Electron. Lett., vol. 27, pp. 1065-1067 (1991).

[122] M. Nakazawa, E. Yamada, H. Kubota, and K. Suzuki,"10 Gbit/s soliton data transmission over one million kilometres," Electron. Lett., vol. 27, pp. 1270-1272 (1991).

[123] E. Yamada, K. Suzuki, and M. Nakazawa," 10 Gbit/s single-pass soliton transmission over 1000 km," Electron. Lett., vol. 27, 1289-1290 (1991).

[124] M. Nakazawa and K. Kurokawa," Femtosecond soliton transmission in 18 km-long dispersion-shifted distributed erbium-doped fibre amplifier," Electron. Lett., vol. 27, pp. 1369-1370 (1991).

[125] M. Nakazawa, K. Suzuki, E. Yamada, and H. Kubota, "Observation of nonlinear interactions in 20 Gbit/s soliton transmission over 500 km using erbium-doped fibre amplifiers," Electron. Lett., vol. 27, pp. 1662-1663 (1991).

[126] M. Nakazawa, E. Yoshida, and Y. Kimura,"Low threshold, 290 fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes," Appl. Phys. Lett., vol. 59, pp. 2073-2075 (1991).

[127] M. Nakazawa," Optical soliton transmission," Trans. IECE (in Japanese) , Invited paper, vol. J74-C-I, pp. 429-439 (1991).

[128] M. Nakazawa, E. Yamada, H. Kubota, "Coexistence of a self-induced-transparency soliton and a nonlinear Schršdinger soliton in an erbium-doped fiber," Phys. Rev. A, vol. 44, pp. 5973-5987 (1991).

[129] K. Kurokawa and M. Nakazawa, "Femtosecond soliton transmission in 18 km erbium-doped fibre amplifier with different pumping configurations," Electron. Lett., vol. 27, pp. 1765-1766 (1991).

[130] Y. Kimura, E. Yoshida, and M. Nakazawa,"High gain characteristics of an erbium-doped fiber amplifier pumped in the 800 nm band," Jpn. J. Appl. Phys., vol. 30, pp. 1995-2001 (1991).

[131] Y. Kimura, K.Suzuki, and M. Nakazawa," Noise figure characteristics of Er3+-doped fiber amplifier pumped in 0.8 μm band," Electron. Lett., vol. 27, No. 2, pp. 146-147, Jan., (1991)

  1990

[90] M. Nakazawa, K. Suzuki, and Y. Kimura," 3.2-5 Gb/s, 100 km error-free soliton transmission with erbium amplifiers and repeaters," IEEE, Photon. Tech. Lett., vol. 2, pp. 216-219 (1990).

[91] H. Kubota and M. Nakazawa," Long distance optical soliton transmission with lumped amplifiers," IEEE, J. Quantum Electron., vol. QE-26, pp. 692-700 (1990).

[92] Y. Kimura, K. Suzuki, and M. Nakazawa," Pump wavelength dependence of the gain factor in 1.48 μm-pumped Er3+-doped fiber amplifiers," Appl. Phys. Lett., vol. 56, pp. 1611-1613 (1990).

[93] K. Kurokawa, M. Nakazawa, and T. A. Caughey," Near Infrared ultrashort pulse generation with LiNbO3 by difference frequency generation," Opt. Commun. , vol. 75, pp. 413-418 (1990).

[94] M. Nakazawa, K. Suzuki, and Y. Kimura," Generation and transmission of optical solitons in the GHz region using a directly modulated distributed-feedback laser diode," Opt. Lett., vol. 15, pp. 588-590 (1990).

[95] M. Nakazawa, K. Suzuki, and Y. Kimura," Transform-limited pulse generation in the GHz region from a gain-switched distributed-feedback laser diode using spectral windowing," Opt. Lett. vol. 15, pp. 715-717 (1990).

[96] K. Suzuki, M. Nakazawa, E. Yamada, and Y. Kimura," 5 Gbit/s, 250 km error-free soliton transmission with Er3+-doped fiber amplifiers and repeaters," Electron. Lett., vol. 26, pp. 551-553 (1990).

[97] M. Nakazawa, Y. Kimura, and K. Suzuki," High gain erbium fibre amplifier pumped by 800 nm band," Electron. Lett., vol. 26, pp. 548-549 (1990).

[98] K. Suzuki, Y. Kimura, and M. Nakazawa," High gain Er3+-doped fibre amplifier pumped by 820 nm GaAlAs laser diodes," Electron. Lett., vol. 26, pp. 948-949 (1990).

[99] M. Nakazawa, K. Kurokawa, H. Kubota, K. Suzuki, and Y. Kimura," Femtosecond erbium-doped optical fiber amplifier," Appl. Phys. Lett., vol. 57, pp. 653-655 (1990).

[100] K. Suzuki, and M. Nakazawa," Automatic optical soliton control using cascaded Er3+-doped fibre amplifiers," Electron. Lett., vol. 26, pp. 1032-1033 (1990).

[101] M. Nakazawa, Y. Kimura, and K. Suzuki," Gain-distribution measurements along an ultralong erbium-doped fiber amplifier using optical-time-domain reflectometry," Opt. Lett., vol. 15, pp. 1200-1202 (1990).

[102] H. Kubota and M. Nakazawa," Maximum transmission capacity of a soliton communication system with lumped amplifiers," Electron. Lett., vol. 26, pp. 1454-1455 (1990).

[103] M. Nakazawa" Erbium-doped optical fiber amplifiers and thier applications," Journal of Applied Physics (In Japanese, Ouyou-Butsuri), vol. 59, no.9, pp. 1175-1192 (1990).

[104] M. Nakazawa, K. Suzuki, E. Yamada, and Y. Kimura," 20 Gbit/s soliton transmission over 200 km using erbium-doped fibre repeaters," Electron. Lett., vol. 26, pp. 1592-1593 (1990).

[105] M. Nakazawa, K. Kurokawa, H. Kubota, and E. Yamada," Observation of the trapping of an optical soliton by adiabatic gain narrowing and its escape," Phys. Rev. Lett., vol. 65, pp. 1881-1884 (1990).

[106] K. Suzuki, Y. Kimura, and M. Nakazawa,"High power Er3+-doped fiber amplifier pumped by 1.48 μm laser diodes," Jpn. J. Appl. Phys., vol. 29, pp. L2067-L2069 (1990).

[107] Y. Kimura, M. Nakazawa, and K. Suzuki," Ultra-efficient erbium-doped fiber amplifier," Appl. Phys. Lett., vol. 57, pp. 2635-2637 (1990).

[108] M. Nakazawa, Y. Kimura, E. Yoshida, and K. Suzuki," Efficient erbium-doped fibre amplifier pumped at 820 nm," Electron. Lett., vol. 26, pp. 1936-1937 (1990).

[109] M. Nakazawa," Propagation and amplification of ultrashort optical soliton pulses in erbium-doped fibers for very high speed communication," Springer Series in Chemical Physics, vol. 53, Ultrafast Phenomena VII, pp. 179-183 (1990).

[110] M. Nakazawa, K. Suzuki, E. Yamada," Femtosecond optical pulse generation using a distributed-feedback laser diode," Electron. Lett., vol. 26, pp. 2038-2040 (1990).

[111] M. Nakazawa, K. Suzuki, H. Kubota, E. Yamada, and Y. Kimura, "Dynamic Optical Soliton Communication," IEEE, J. Quantum Electron., vol. QE-26, pp. 2095-2102 (1990).

[112] M. Nakazawa, Y. Kimura, and K. Suzuki," Ultralong Dispersion-shifted Erbium-Doped Fiber Amplifier and Its Application to soliton transmission," IEEE, J. Quantum Electron., vol. QE-26, pp. 2103-2108 (1990).

[113] M. Nakazawa, Y. Kimura, and K. Suzuki, " High gain erbium fiber amplifier pumped by 800nm band," Electron. Lett., vol. 26, No. 8, pp. 548-549, Apr., (1990)

  1989

[71] M. Nakazawa, Y. Kimura, and K. Suzuki,"Efficient Er3+-doped optical fiber amplifier pumped by a 1.48 μm InGaAsP laser diode," Appl. Phys. Lett., vol. 54, pp. 295-297 (1989).

[72] K. Suzuki, M. Nakazawa, and H. A. Haus," Parametric soliton laser," Opt. Lett., vol. 14, pp. 320-322 (1989).

[73] M. Nakazawa, Y. Kimura, and K. Suzuki, " Soliton amplification and transmission with Er3+-doped fibre repeater pumped by GaInAsP laser diode," Electron. Lett., vol.25, pp. 199-200 (1989).

[74] K. Suzuki, M. Nakazawa, and H. A. Haus," The parametric soliton laser with low pedestal," Jpn. J. Appl. Phys. vol. 28, pp. L256-258 (1989).

[75] M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus," High-order solitons and the modulational instability," Phys. Rev. A, vol. 39, pp. 5768-5776 (1989).

[76] H. Kubota and M. Nakazawa," Study of optical pulse compression with higher-order nonlinearity and dispersion," Jpn. J. Appl. Phys., vol. 28, pp. 609-614 (1989).

[77] K. Kurokawa and M. Nakazawa," Femtosecond 1.4-1.6 μm infrared pulse generation at a high repetition rate by difference frequency generation," Appl. Phys. Lett., vol. 55, pp. 7-9 (1989).

[78] K. Suzuki, Y. Kimura and M. Nakazawa," An 8 mW cw Er3+-doped fiber laser pumped by 1.46 μm InGaAsP laser diodes," Jpn. J. Appl. Phys., vol. 28, pp. L1000-1002 (1989).

[79] M. Nakazawa, K. Suzuki, and H. A. Haus," The modulational instability laser-Part I:Experiment," IEEE ,J. Quantum Electron., vol. QE-25, pp. 2036-2044 (1989).

[80] M. Nakazawa, K. Suzuki, and H. Kubota, and H. A. Haus," The modulational instability laser-Part II: Theory," IEEE, J. Quantum Electron., vol. QE-25, pp. 2045-2052 (1989).

[81] K. Hagimoto, K. Iwatsuki, A. Takada, M. Nakazawa, et. al.M. Saruwatari, K. Aida, and K. Nakagawa, " 250 km nonrepeated transmission experiment at 1.8 Gb/s using LD pumped Er3+-doped fibre amplifiers in IM/DD system," Electron. Lett., vol. 25, pp. 662-664 (1989).

[82] K. Suzuki, Y. Kimura and M. Nakazawa," Subpicosecond soliton amplification and transmission using Er3+-doped fibers pumped by InGaAsP laser diodes," Opt. Lett., vol. 14, 865-867 (1989).

[83] M. Nakazawa, Y. Kimura, K. Suzuki, and H. Kubota," Wavelength multiple soliton amplification and transmission with an Er3+-doped optical fiber," J. Appl. Phys. vol. 66, pp. 2803-2812 (1989).

[84] M. Nakazawa, K. Suzuki, and Y. Kimura,"20-GHz soliton amplification and transmission with an Er3+-doped fiber," Opt. Lett., vol. 14, pp. 1065-1067 (1989).

[85] M. Nakazawa, Y. Kimura, K. Suzuki, H. Kubota," Erbium-doped fiber amplifier and its application to nonlinear optics," Proceedings of SPIE-The International Society for Optical Engineering, vol. 1171, pp. 328-345 (1989).

[86] K. Kurokawa, H. Kubota, and M. Nakazawa," Generation of 72-fs pulse from a cavity dumped, synchronously pumped dye laser with a single jet," Opt. Commun., vol. 73, pp. 319-321 (1989).

[87] K. Suzuki, Y. Kimura, and M. Nakazawa," Pumping wavelength dependence on gain factor of a 0.98 μm pumped Er3+ fiber amplifier," Appl. Phys. Lett., vol. 55, pp. 2573-2575 (1989).

[88] Y. Kimura, K. Suzuki, and M. Nakazawa," 46.5 dB gain in Er3+-doped fibre amplifier pumped by 1.48 μm GaInAsP laser diodes," Electron. Lett., vol. 25, pp. 1656-1657 (1989).

[89] Y. Kimura, K. Suzuki, and M. Nakazawa," Laser-diode-pumped mirror-free Er3+-doped fiber laser," Opt. Lett., Vol. 14, No. 18, pp. 999-1001, Sep., (1989)

  1988

[61] M. Nakazawa, T. Nakashima, H. Kubota, and S. Seikai," Efficient optical pulse compression using a pair of Brewster-angled TeO2 crystal prisms," J. Opt. Soc. Amer., vol. B-5, pp. 215-221 (1988).

[62] M. Nakazawa, T. Nakashima, and H. Kubota," Optical pulse compression using a TeO22 acousto-optical light deflector," Opt. Lett., vol. 13, pp. 120-122 (1988).

[63] H. Kubota and M. Nakazawa," Compensation of nonlinear chirp generated by self-steepening using third order dispersion of a grating pair," Opt. Commun., vol. 66, pp. 79-82 (1988).

[64] Y. Kimura and M. Nakazawa," Lasing characteristics of Er3+-doped silica fibers from 1553 up to 1603 nm," J. Appl. Phys., vol. 64, pp. 516-520 (1988).

[65] T. Horiguchi M. Nakazawa, and M. Tokuda," Multimode-fiber-type optical directional coupler for OTDR by using acoustooptical deflector," Trans. IECE (in Japanese), vol. J7l-B, pp. 547-554 (1988).

[66] K. Suzuki and M. Nakazawa," Raman amplification in a P2O5-doped optical fiber," Opt. Lett., vol. 13, pp. 666-668 (1988).

[67] H. Kubota, K. Kurokawa, and M. Nakazawa," 29-fsec pulse generation from a linear-cavity synchronously pumped dye laser," Opt. Lett., vol. 13, pp. 749-751 (1988).

[68] M. Nakazawa, K. Suzuki, and H. A. Haus," Modulational instability oscillation in nonlinear dispersive ring cavity," Phys. Rev. A, vol. 38, pp. 5193-5196 (1988).

[69] K. Kurokawa, H. Kubota, and M. Nakazawa,"48 fs, 190 kW pulse generation from a cavity dumped, synchronously pumped dye laser," Opt. Commun., vol. 68, pp. 287-290 (1988).

[70] Y. Kimura and M. Nakazawa," Multiwavelength cw laser oscillation in a Nd3+ and Er3+ doubly doped fiber laser," Appl. Phys. Lett., vol. 53, pp. 1251-1253 (1988).

  1987

[51] H. A. Haus and M. Nakazawa," Theory of the fiber Raman soliton laser," J. Opt. Soc. Amer., vol. B-4, pp. 652-660 (1987).

[52] T. Nakashima, M. Nakazawa, K. Nishi, and H. Kubota," Effect of stimulated Raman scattering on pulse-compression characteristics," Opt. Lett., vol. 12, pp. 404-406 (1987).

[53] Y. Kimura and M. Nakazawa," Lasing spectrum of P co-doped Nd3+ silica fibers," Jpn. J. Appl. Phys., vol. 26, pp. L1253-1254 (1987).

[54] M. Nakazawa, T. Nakashima, H. Kubota, and S. Seikai, " 65-femtosecond pulse generation from a synchronously pumped dye laser without a colliding-pulse mode-locking technique," Opt. Lett., vol. 12, pp. 68l-683 (1987).

[55] M. Nakazawa, M. S. Stix, E. P. Ippen, and H. A. Haus," Theory of the synchronously pumped fiber Raman laser with self-phase modulation," J. Opt. Soc. Amer., vol. B-4, pp. 1412-1421 (1987).

[56] M. Nakazawa, T. Nakashima, H. Kubota, and S. Seikai," 55 kW, 240 fs pulse generation from a cavity dumped, synchronously pumped dye laser and its application to pulse compression," Appl. Phys. Lett., vol. 51, pp. 728-730 (1987).

[57] Y. Kimura, M. Nakazawa, and S. Seikai, " Fiber-optic nonlinear coherent coupler," IEEE, J. Quantum Electron., vol. QE-23, pp. 1261-1267 (1987).

[58] M. Nakazawa," Nonlinear optics in optical fibers," Journal of Applied Physics (In Japanese, Ouyou-Butsuri), vol. 56, no. 10, pp. 1265-1288 (1987).

[59] M. Nakazawa and Y. Kimura," Simultaneous oscillation at 0.91, 1.08, 1.53 μm in a fusion-spliced fiber laser," Appl. Phys. Lett., vol. 51, pp. 1768-1770 (1987).

[60] Y. Kimura and M. Nakazawa," Nonlinear polarization changes in a birefringent fiber," Jpn. J. Appl. Phys., vol. 26, pp. 1503-1508 (1987).

  1986

[46] M. Nakazawa," Phase-sensitive detection on Lorentzian line shape and its application to frequency stabilization of lasers," J. Appl. Phys., vol. 59, pp. 2297-2305 (1986).

[47] T. Nakashima, S. Seikai, and M. Nakazawa," Configuration of the optical transmission line using stimulated Raman scattering for signal light amplification," J. Lightwave Tech., vol. LT-4, pp.569-573 (1986).

[48] N. Uesugi, T. Horiguchi, M. Nakazawa, and Y. Murakami," Optical fiber cable measurements in the field," IEEE, J. Selected Areas in Communications, vol. SAC-4, pp.732-736 (1986).

[49] T. Nakashima, S. Seikai, M. Nakazawa, and Y. Negishi," Theoretical limit of repeater spacing in an optical transmission line utilizing Raman amplification," IEEE, J. Lightwave Tech., vol. LT-4, pp. 1267-1272 (1986).

[50] M. Nakazawa, M. Kuznetsov, and E. P. Ippen, "Theory of the synchronously pumped fiber Raman laser," IEEE, J. Quantum Electron., vol. QE-22, pp. 1953-1966 (1986).

  1985

[35] M. Nakazawa, T. Nakashima, S. Seikai, and M. Ikeda," Self-detecting optical-time-domain reflectometer for single-mode fibers," Opt. Lett., vol. 10, pp. 157-159 (1985).

[36] T. Nakashima, M. Nakazawa, and S. Seikai,"Optical time domain reflectometer with a laser diode operating as light emitter/photodetector," Jpn. J. Appl. Phys., vol. 24, pp. L135-L136 (1985).

[37] M. Nakazawa," Synchronously pumped fiber Raman gyroscope," Opt. Lett., vol. 10, pp. 193-195 (1985).

[38] M. Nakazawa," Highly efficient Raman amplification in a polarization-preserving optical fiber," Appl. Phys. Lett., vol. 46, pp. 628-630 (1985).

[39] M. Nakazawa, T. Nakashima, and S. Seikai, " Raman amplification in 1.4-1.5 μm spectral region in polarization-preserving optical fibers," J. Opt. Soc. Amer., vol. B-2, pp. 515-521 (1985).

[40] T. Nakashima, M. Nakazawa, and Y. Negishi," Sum-frequency generation in a polarization-preserving optical fiber," Jpn. J. Appl. Phys., vol. 24, pp. L308-310 (1985).

[41] N. Shibata, K. Okamoto, M. Nakazawa, S. Seikai, and M. Tokuda, "Polarization mode properties of an elliptical stress-cladding fiber," Trans. IECE of Japan, vol. E-68, pp. 277-283 (1985).

[42] M. Nakazawa, N. Shibata, T. Horiguchi, and S. Seikai, "Polarization-mode-coupling measurements along a spliced polarization- preserving fiber using a backscattering technique," J. Opt. Soc. Amer., vol. A-2, pp. 1066-1076 (1985).

[43] T. Horiguchi, K. Suzuki, N. Shibata, M. Nakazawa, and S. Seikai," A novel technique for reducing polarization noise in optical-time-domain reflectometers for single-mode fibers," J. Lightwave Tech., vol. LT-3, pp. 901-908 (1985).

[44] T. Nakashima, S. Seikai, and M. Nakazawa," Dependence of Raman gain on relative index difference for GeO2-doped single-mode fibers," Opt. Lett., vol. 10, pp. 420-422 (1985).

[45] M. Nakazawa," Measurement of polarization mode-coupling along a polarization-preserving optical fiber using a backscattering technique,"Jpn Soc. of Opt. (in Japanese), vol. 14, pp. 350-358 (1985).

  1984

[26] M. Nakazawa, M. Tokuda, Y. Negishi, and N. Uchida," Active transmission line: Light amplification by backward stimulated Raman scattering in polarization-maintaining optical fiber," J. Opt. Soc. Amer., vol. B-l, pp. 80-85 (1984).

[27] M. Nakazawa, M. Tokuda, and N. Uchida," Continuous-wave Raman oscillation for a Nd3+:YAG intracavity fiber laser," J. Opt. Soc. Amer., vol. B-l, pp. 86-90 (1984).

[28] M. Nakazawa, N. Shibata, M. Tokuda, and Y. Negishi," Measurements of polarization mode couplings along polarization-maintaining single-mode optical fibers," J. Opt. Soc. Amer., vol. A-l, pp. 285-292 (1984).

[29] T. Horiguchi, M. Nakazawa, M. Tokuda, and N. Uchida," An acoustooptical directional coupler for an optical time domain reflectometer," J. Lightwave Tech., vol. LT-2, pp. 108-115 (1984).

[30] M. Nakazawa, M. Tokuda, Y. Morishige, and H. Toratani," 1.55 μm OTDR for single-mode optical fibre longer than 110 km," Electron. Lett., vol. 20, pp. 323-325 (1984).

[31] Y. Morishige, S. Kishida, K. Washio, H. Toratani, and M. Nakazawa," Output-stabilized high-repetition-rate 1.545-μm Q-switched Er:glass laser," Opt. Lett., vol. 9. pp. 147-149 (1984).

[32] M. Nakazawa, M. Tokuda, K. Washio, and Y. Asahara," 130-km long fault location for single-mode optical fiber using 1.55 μm Q-switched Er3+:glass laser," Opt. Lett., vol.9, pp. 312-314 (1984).

[33] M. Nakazawa, T. Nakashima, and M. Tokuda," An optoelectronic self-oscillatory circuit with an optical fiber delayed feedback and its injection locking technique," J. Lightwave Tech., vol. LT-2, pp. 719-730 (1984).

[34] M. Nakazawa, T. Nakashima, and S. Seikai, " Efficient multiple visible light generation in a polarization-preserving optical fiber pumped by a 1.064 μm YAG laser," Appl. Phys. Lett., vol. 45, pp. 823-825 (1984).

  1983

[18]@M. Nakazawa, M. Tokuda, and N. Uchida," Analyses of optical time-domain reflectometry for single-mode fibers and of polarization optical time-domain reflectometry for polarization-maintaining fibers," Opt. Lett., vol. 8, pp. 130-132 (1983).

[19] M. Nakazawa," Theory of backward Rayleigh scattering in polarization-maintaining single-mode fibers and its application to polarization optical time domain reflectometry," IEEE, J. Quantum Electron., vol. QE-19, pp. 854-86l (1983).

[20] M. Nakazawa, M. Tokuda, and N. Uchida," Lasing characteristics of a Nd3+:YAG laser with a long optical-fiber resonator," J. Opt. Soc. Amer., vol. 73, pp. 838-842 (1983).

[21] M. Nakazawa, and K. Aoyama," Measurement technique for single-mode optical fiber," Rev. ECL., vol. 31, pp. 290-298 (1983).

[22] M. Nakazawa and M. Tokuda,"Measurement of the fiber loss spectrum using fiber Raman optical time domain reflectometry," Appl. Opt. , vol. 22, pp. 1910-1914 (1983).

[23] M. Nakazawa," Rayleigh backscattering theory for single-mode optical fibers," J. Opt. Soc. Amer., vol. 73, pp. 1175-1180 (1983).

[24] M. Nakazawa and M. Tokuda," Continuum spectrum generation in a multimode fiber using two pump beams at 1.3 μm wavelength region," Jpn. J. Appl. Phys., vol. 22, pp. L239-L241 (1983).

[25] M. Nakazawa, M. Tokuda, and Y. Negishi," Measurement of polarization mode coupling along a polarization-maintaining optical fiber using a backscattering technique," Opt. Lett., vol. 8, pp. 546-548 (1983).

  1982

[14] T. Musha, J. Kamimura, and M. Nakazawa," Optical phase fluctuation thermally induced in a single-mode optical fiber," Appl. Opt., vol. 21, pp. 694-698 (1982).

[15]M. Nakazawa, M. Tokuda, and K. Washio,@"Optical time domain reflectometry at a wavelength of 1.5 μm using stimulated Raman scattering in multimode, graded-index optical fiber," J. Appl. Phys., vol. 53, pp. 1391-1393 (1982).

[16] M. Nakazawa," Frequency characteristics of self-sustained intensity oscillation of a laser diode using a delayed electrical feedback," IEEE, J. Quantum Electron., vol. QE-18, pp. 1050-1052, (1982).

[17]@M. Nakazawa, M. Tokuda, and N. Uchida,@"Continuous-wave laser oscillation with an ultralong optical-fiber resonator," J. Opt. Soc. Amer., vol. 72, pp. 1338-1344 (1982).

  1981

[8] M. Nakazawa, T. Tanifuji, M. Tokuda, and N. Uchida," Photon probe fault locator for single-mode optical fiber using an acousto-optical light deflector," IEEE, J. Quantum Electron., vol. QE-17, pp. 1264-1269 (1981).

[9] M. Nakazawa, T. Horiguchi, M. Tokuda, and N. Uchida,"Polarization beat length measurement in a single-mode optical fibre by backward Rayleigh scattering," Electron. Lett., vol. 17, pp. 513-515 (1981).

[10] M. Nakazawa, M. Tokuda, and N. Uchida,"Self-sustained intensity oscillation of a laser diode introduced by a delayed electrical feedback using an optical fiber and an electrical amplifier," Appl. Phys. Lett., vol. 39, pp. 379-381 (1981).

[11] M. Nakazawa, J. Kamimura, and T. Musha,"Preliminary experiment for optical heterodyne communication with a single-mode optical fiber by using frequency -stabilized He-Ne lasers," Opt. Lett., vol. 6, pp. 508-510 (1981).

[12] M. Nakazawa, M. Tokuda, K. Washio, and Y. Morishige,"Marked extension of diagnosis length in optical time domain reflectometry using 1.32 μm YAG laser," Electron. Lett., vol. 17, pp. 783- 785 (1981).

[13] M. Nakazawa, T. Horiguchi, M. Tokuda, and N. Uchida," Measurement and analysis on polarization properties of backward Rayleigh scattering for single-mode optical fibers,"@IEEE J. Quantum Electron., vol. QE-17, pp. 2326-2334 (1981).

  1980

[5] M. Nakazawa and T. Musha, "Stability measurement of the 0.633 μm line in a CH4-locked 3.39 μm He-Ne laser," Jpn. J. Appl. Phys. vol. 19, pp. L315-317 (1980).

[6] M. Nakazawa and T. Musha,"Stability of FM-eliminated 3.39 μm He-Ne/CH4 laser" Jpn. J. Appl. Phys., vol. 19, pp. L327-330, (1980).

[7] M. Nakazawa, J. Nakamura, and T. Musha," FM eliminated CH4, locked frequency stabilization of 3.39 μm He-Ne laser in dual feedback control," IEEE, J. Quantum Electron., vol. QE-16, pp. 854-859 (1980).

  1979

[1] M. Nakazawa, T. Tako, and T. Musha,"Frequency stabilization of a 3.39 μm He-Ne laser with no frequency modulation," Trans. IECE (in Japanese), vol.J62-C, pp.9-16 (1979).

[2] M. Nakazawa, T. Tako, and T. Musha,"Observation of saturated absorption of the 3.39 μm line in an external CH44cell," Jpn. J. Appl. Phys., vol. 18, pp. 597-602 (1979).

[3] M. Nakazawa, T. Musha, and T. Tako, "Frequency-stabilized 3.39 μm He-Ne laser with no frequency modulation," J. Appl. Phys., vol. 50, pp. 2544-2547 (1979).

[4] M. Nakazawa, J. Nakamura, and T. Musha,"Frequency stabilization of 0.633 μm line with the aid of 3.39-μm line locked to CH4," Appl. Phys. Lett., vol. 35, pp. 745-747 (1979).


ªTOP

@