
|
2023 |
 |
|
[521] M. Nakazawa and T. Hirooka, Theory of Higher-Order Hermite-Gaussian Pulse Generation From an FM Mode-Locked Laser, IEEE J. Quantum Electron., vol. 59, no. 2, 1600325, Apr. (2023).
|
|
2022 |
 |
|
[511] M. Yoshida, K. Sato, T. Hirooka, K. Kasai, and M. Nakazawa, Precise Measurements and their Analysis of GAWBS-Induced Depolarization Noise in Multi-Core Fiber for Digital Coherent Transmission, IEICE Trans. Comm., vol. E105-B, no. 2, pp. 151-158, February (2022).
[512] M. Nakazawa and T. Hirooka, Theory of FM Mode-Locking of a Laser as an Arbitrary Optical Function Generator, IEEE J. Quantum Electron., vol. 58, no. 2, 1300125, April (2022).
[513] K. Kasai, T. Kan, M. Yoshida, T. Hirooka, and M. Nakazawa, Broadband injection-locked homodyne receiver for digital coherent transmission using a low Q Fabry-Perot LD, Opt. Express, vol. 30, no. 8, pp. 13345-13355, April (2022).
[514] M. Nakazawa, M. Yoshida, and T. Hirooka, Experiments on an AM Mode-Locked Laser as an Arbitrary Optical Function Generator, IEEE J. Quantum Electron., vol. 58, no. 3, 1300218, June (2022).
[515] M. Nakazawa, M. Yoshida, and T. Hirooka, Experiments on an FM Mode-Locked Laser as an Arbitrary Optical Function Generator, IEEE J. Quantum Electron., vol. 58, no. 3, 1300316, June (2022).
[516] M. Naghshvarianjahromi, S. Kumar, M. J. Deen, T. Iwaya, K. Kimura, M. Yoshida, T. Hirooka, and M. Nakazawa, Software-Defined Fiber Optic Communications for Ultrahigh-Speed Optical Pulse Transmission Systems, IEEE J. Sel. Topics Quantum Electron., vol. 28, no. 4, 7500210, July-Aug. (2022).
[517] K. Kimura, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, Experimental and Numerical Analysis of Ultrahigh-Speed Coherent Nyquist Pulse Transmission with Low-Nonlinearity Dispersion Compensator, IEICE Trans. Comm., vol. E105-B, no. 9, pp. 1014-1022, Sep. (2022).
[518] M. Nakazawa and T. Hirooka, Theory of Generation of Various Dark and Negative Pulses From an FM Mode-Locked Laser, IEEE J. Quantum Electron., vol. 58, no. 5, 1300524, Oct. (2022).
[519] M. Nakazawa, K. Kasai, M. Yoshida, and T. Hirooka, Optical and Wireless Linked Fully Coherent Access System toward Next Generation RAN, IEICE Trans. Electron. (in Japanese), invited paper, vol. J105-C, no. 11, pp. 315-328, Nov. (2022).
[520] M. Nakazawa, M. Yoshida, and T. Hirooka, Experiments on Generation of Various Dark and Bright Pulses from an FM Mode-Locked Laser, IEEE J. Quantum Electron., vol. 58, no. 6, 1600523, December (2022).
|
|
2021 |
 |
|
[501] T. Kan, K. Sato, M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, Spectrally efficient pilot tone-based compensation of inter-channel cross-phase modulation noise in a WDM coherent transmission using injection locking, Opt. Express, vol. 29, no. 2, pp. 1454-1469, January (2021).
[502] M. Yoshida, T. Kan, K. Kasai, T. Hirooka, and M. Nakazawa, 10 Tbit/s QAM quantum noise stream cipher coherent transmission over 160 km, J. Lightwave Technol., vol. 39, no. 4, pp. 1056-1063, February (2021).
[503] M. Yoshida, T. Kan, K. Kasai, T. Hirooka, K. Iwatsuki, and M. Nakazawa, 10 channel WDM 80 Gbit/s/ch, 256 QAM bi-directional coherent transmission for a high capacity next-generation mobile fronthaul, J. Lightwave Technol., vol. 39, no. 5, pp. 1289-1295, March (2021).
[504] M. Yoshida, T. Hirooka, and M. Nakazawa, Ultrahigh-speed Nyquist pulse transmission beyond 10 Tbit/s, IEEE J. Selected Topics in Quantum Electronics (invited paper), vol. 27, no. 2, 7700612, March/April (2021).
[505] K. Sato, T. Kan, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, Chromatic dispersion dependence of GAWBS phase noise compensation with pilot tone, Opt. Express, vol. 29, no. 7, pp. 10676-10687, March (2021).
[506] M. Nakazawa, M. Yoshida, and T. Hirooka, Recent progress and challenges toward ultrahigh-speed transmission beyond 10 Tbit/s with optical Nyquist pulses, IEICE Electron. Express (invited paper), vol. 18, no. 7, 20212001, April (2021).
[507] M. Nakazawa and T. Hirooka, A Generalized Mode-locking Theory for a Nyquist Laser with an Arbitrary Roll-off Factor PART I: Master Equations and Optical Filters in a Nyquist Laser, IEEE J. Quantum Electron., vol. 57, no. 3, 1100117, June (2021).
[508] M. Nakazawa and T. Hirooka, A Generalized Mode-locking Theory for a Nyquist Laser with an Arbitrary Roll-off Factor PART II: Oscillation Waveforms and Spectral Characteristics, IEEE J. Quantum Electron., vol. 57, no. 3, 1100215, June (2021).
[509] M. Nakazawa and T. Hirooka, Theory of AM Mode-Locking of a Laser as an Arbitrary Optical Function Generator, IEEE J. Quantum Electron., vol. 57, no. 6, 1300320, December (2021).
[510] K. Sato, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, GAWBS noise correlation between cores in multi-core fibers, Opt. Express, vol. 29, no. 26, pp. 42523-42537, December (2021).
|
|
2020 |
 |
|
[497] N. Takefushi, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, Theoretical and experimental analyses of GAWBS phase noise in various optical fibers for digital coherent transmission, Opt. Express vol. 28, no. 3, pp. 2873-2883, February (2020).
[498] N. Takefushi, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, GAWBS phase noise characteristics in multi-core fibers for digital coherent transmission, Opt. Express vol. 28, no. 15, pp. 23012-23022, July (2020).
[499] M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, Ultrahigh-speed Nyquist pulse transmission beyond 10 Tbit/s, IEEE J. Selected Topics in Quantum Electronics (invited paper), vol. 27, no. 2, 7700612, March/April (2021).
[500] T. Kan, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, Injection-locked 256 QAM WDM coherent transmissions in C- and L-bands, Opt. Express vol. 28, no. 23, pp. 34665-34676, November (2020).
|
|
2019 |
 |
|
[494] M. Yoshida, K. Kimura, T. Iwaya, K. Kasai, T. Hirooka, and M. Nakazawa, Single-channel 15.3 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 8.3 bit/s/Hz, Opt. Express vol. 27, no. 20, pp. 28952-28967, September (2019).
[495] M. Yoshida, N. Takefushi, K. Kasai, T. Hirooka, and M. Nakazawa, "Suppression of large error floor in 1024 QAM digital coherent transmission by compensating for GAWBS phase noise," Opt. Express vol. 27, no. 25, pp. 36691-36698, December (2019).
[496] R. Hirata, T. Hirooka, M. Yoshida, and M. Nakazawa, Wavelength-tunable sub-picosecond optical switch over entire C-band using nonlinear optical loop mirror, IEICE Electron. Express vol. 16, no. 23, 20190664, December (2019).
|
|
2018 |
 |
|
[487] S. Okamoto, M. Terayama, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, Experimental and numerical comparison of probabilistically shaped 4096 QAM and a uniformly shaped 1024 QAM in all-Raman amplified 160 km transmission, Opt. Express vol. 26, no. 3, pp. 3535-3543, February (2018).
[488] K. Kasai, M. Nakazawa, M. Ishikawa, and H. Ishii, 8 kHz linewidth, 50 mW output, full C-band wavelength tunable DFB LD array with self-optical feedback, Opt. Express vol. 26, no. 5, pp. 5675-5685, March (2018).
[489] D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, M. Yoshida, K. Kasai, M. Nakazawa, H. Takahashi, K. Igarashi, I. Morita, and M. Suzuki, 10.16-Peta-bit/s Dense SDM/WDM Transmission over 6-Mode 19-Core Fiber across the C+L Band, J. Lightwave Technol. vol. 36, no. 6, pp. 1362-1368, March (2018).
[490] M. Nakazawa, M. Yoshida, M. Terayama, S. Okamoto, K. Kasai, and T. Hirooka, "Observation of guided acoustic-wave Brillouin scattering noise and its compensation in digital coherent optical fiber transmission," Opt. Express vol. 26, no. 7, pp. 9165-9181, April (2018).
[491] Y. Wang, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa, "Single-channel 200 Gbit/s, 10 Gsymbol/s-1024 QAM injection-locked coherent transmission over 160 km with a pilot-assisted adaptive equalizer," Opt. Express vol. 26, no. 13, pp. 17015-17024, June (2018).
[492] K. Kimura, J. Nitta, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, "Single-channel 7.68 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 9.7 bit/s/Hz," Opt. Express vol. 26, no. 13, pp. 17418-17428, June (2018).
[493] T. Hirooka, R. Hirata, J. Wang, M. Yoshida, and M. Nakazawa, Single-channel 10.2 Tbit/s (2.56 Tbaud) optical Nyquist pulse transmission over 300 km, Opt. Express, vol. 26, no. 21, pp. 27221-27236, October (2018).
|
|
2017 |
 |
|
[478] M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, and R. Namiki, QAM quantum noise stream cipher transmission over 100 km with continuous variable quantum key distribution, IEEE, J. Quantum Electron. Vol. 53, 2708523, June (2017).
[479] J. Nitta, M. Yoshida, K. Kimura, K. Kasai, T. Hirooka, and M. Nakazawa, Single-channel 3.84 Tbit/s, 64QAM coherent Nyquist transmission over 150 km with a spectral efficiency of 10.6 bit/s, Opt. Express, vol. 25, no. 13, pp. 15199-15207, June (2017).
[480] M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, R. Namiki, QAM Quantum Noise Stream Cipher Transmission over 100 km with Continuous Variable Quantum Key Distribution," IEEE J. Quantum Electron., vol. 53, no. 4, 8000316, August (2017).
[481] M. Yoshida, T. Hirooka, and M. Nakazawa, Low-loss and reflection-free fused type fan-out device for 7-core fiber based on a bundled structure, Opt. Express, vol. 25, no. 16, pp. 18817-18826, August (2017).
[482] S. Kumar and M. Nakazawa, Discrete solitons in optical fiber systems with large pre-dispersion, Opt. Express, vol. 25, no. 17, pp. 19923-19945, August (2017).
[483] K. Kasai, M. Nakazawa, Y. Tomomatsu, and T. Endo, 1.5 µm, mode-hop-free full C-band wavelength tunable laser diode with a linewidth of 8 kHz and a RIN of -130 dB/Hz and its extension to the L-band, Opt. Express, vol. 25, no. 18, pp. 22113-22124, September (2017).
[484] T. Kan, K. Kasai, M. Yoshida, and M. Nakazawa, 42.3 Tbit/s, 18 Gbaud 64 QAM WDM coherent transmission over 160 km in the C-band using an injection-locked homodyne receiver with a spectral efficiency of 9 bit/s/Hz, Opt. Express vol. 25, no. 19, pp. 22726-22737, September (2017).
[485] K. Harako, M. Yoshida, T. Hirooka, and M. Nakazawa, "A 40 GHz, 770 fs regeneratively mode-locked erbium fiber laser operating at 1.6 µm," IEICE Electron. Express, vol. 14, no. 18, 20170829, October (2017).
[486] H. Ishii, N. Fujiwara, K. Watanabe, S. Kanazawa, M. Itoh, H. Takenouchi, Y. Miyamoto, K. Kasai, and M. Nakazawa, Narrow Linewidth Tunable DFB Laser Array Integrated with Optical Feedback Planar Lightwave Circuit (PLC), IEEE Sel. Top. Quantum Electron. vol. 23, no. 6, 1501007, November/December (2017).
|
|
2016 |
 |
|
[466] T. Yajima, J. Yamamoto, Y. Kinoshita, F. Ishii, T. Hirooka, M. Yoshida, and M. Nakazawa, OH-free low loss single-mode fiber fabricated by slurry casting / rod-in-tube method, IEICE Electron. Express, vol. 13, no. 1, 20151005, January (2016).
[467] M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km, Opt. Express, vol. 24, no. 1, pp. 652-661, January (2016).
[468] D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, Single-channel 1.92 Tbit/s, 64 QAM coherent Nyquist orthogonal TDM transmission with a spectral efficiency of 10.6 bit/s/Hz, J. Lightwave Technol. vol. 34, no. 2, pp. 768-775, January (2016).
[469] K. Kasai, M. Yoshida, and M. Nakazawa, 295 mW output, frequency-stabilized erbium silica fiber laser with a linewidth of 5 kHz and a RIN of -120 dB/Hz, Opt. Express vol. 24, no. 3, pp. 2737-2748, February (2016).
[470] M. Nakazawa and T. Hirooka, "Mode locking theory of the Nyquist laser," Opt. Express vol. 24, no. 5, pp. 4981-4995, March (2016).
[471] M. Nakao, M. Yoshida, T. Hirooka, and M. Nakazawa, A 1.55 µm, 271 fs and 1.07 µm, 294 fs simultaneously mode-locked Er- and Yb-doped fiber laser with a single SWNT/PVA saturable absorber, IEICE Electron. Express, vol. 13, no. 14, 20160515, July (2016).
[472] M. Nakazawa and T. Hirooka, A Non-Perturbative Mode-Locking Theory of the Nyquist Laser with a Dirichlet Kernel Solution, IEEE J. Quantum Electron. vol. 52, no. 8, 1300113, August (2016).
[473] K. Harako, D. Suzuki, T. Hirooka, and M. Nakazawa, Roll-off factor dependence of Nyquist pulse transmission, Opt. Express, vol. 24, no. 19, pp. 21986-21994, September (2016).
[474] Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, 320 Gbit/s, 20 Gsymbol/s 256 QAM coherent transmission over 160 km by using injection-locked local oscillator, Opt. Express, vol. 24, no. 19, pp. 22088-22096, September (2016).
[475] T. Hirooka, K. Tokuhira, M. Yoshida, and M. Nakazawa, 440 fs, 9.2 GHz regeneratively mode-locked erbium fiber laser with a combination of higher-order solitons and a SESAM saturable absorber, Opt. Express, vol. 24, no. 21, pp. 24255-24264, October (2016).
[476] M. Yoshida, K. Yoshida, K. Kasai, and M. Nakazawa, 1.55 µm hydrogen cyanide optical frequency-stabilized and 10 GHz repetition-rate-stabilized mode-locked fiber laser, Opt. Express, vol. 24, no. 21, pp. 24287-24296, October (2016).
[477] D. Suzuki, K. Harako, T. Hirooka, and M. Nakazawa, Single-channel 5.12 Tbit/s (1.28 Tbaud) DQPSK transmission over 300 km using non-coherent Nyquist pulses, Opt. Express, vol. 24, no. 26, pp. 29682-29690, December (2016).
|
|
2015 |
 |
|
[457] A. Fujisaki, S. Matsushita, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, gAn 11.6 W output, 6 kHz linewidth, single-polarization EDFA-MOPA system with a 13C2H2frequency stabilized fiber laser,h Opt. Express, vol. 23, no. 2, pp. 1081-1087, January (2015).
[458] S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, "2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz," Opt. Express, vol. 23, no. 4, pp. 4960-4969, February (2015).
[459] M. Yoshida, S. Beppu, K. Kasai, T. Hirooka, and M. Nakazawa, 1024 QAM, 7-core (60 Gbit/s x 7) fiber transmission over 55 km with an aggregate potential spectral efficiency of 109 bit/s/Hz, Opt. Express, vol. 23, no. 16, pp. 20760-20766, August (2015).
[460] T. Hirooka, D. Seya, K. Harako, D. Suzuki, and M. Nakazawa, Ultrafast Nyquist OTDM demultiplexing using optical Nyquist pulse sampling in an all-optical nonlinear switch, Opt. Express, vol. 23, no. 16, pp. 20858-20866, August (2015).
[461] K. Kasai, Y. Wang, D. O. Otuya, M. Yoshida, and M. Nakazawa, 448 Gbit/s, 32 Gbaud 128 QAM coherent transmission over 150 km with a potential spectral efficiency of 10.7 bit/s/Hz, Opt. Express, vol. 23, no. 22, pp. 28423-28429, November (2015).
[462] K. Kasai, Y. Wang, S. Beppu, M. Yoshida, and M. Nakazawa, 80 Gbit/s, 256 QAM coherent transmission over 150 km with an injection-locked homodyne receiver, Opt. Express, vol. 23, no. 22, pp. 29174-29183, November (2015).
[463] K. Harako, D. Suzuki, T. Hirooka, and M. Nakazawa, 2.56 Tbit/s/ch (640 Gbaud) polarization-multiplexed DQPSK non-coherent Nyquist pulse transmission over 525 km, Opt. Express, vol. 23, no. 24, pp. 30801-30806, November (2015).
[464] T. Hirooka, K. Kasai, Y. Wang, M. Nakazawa, M. Shiraiwa, Y. Awaji, and N. Wada, First demonstration of digital coherent transmission in a deployed ROADM network with a 120 Gbit/s polarization-multiplexed 64 QAM signal, IEICE Electron. Express, vol. 12, no. 23, 20150884, December (2015).
[465] T. Hirooka and M. Nakazawa, Q-factor analysis of nonlinear impairments in ultrahigh-speed Nyquist pulse transmission, Opt. Express, vol. 23, no. 26, pp. 33484-33492, December (2015).
|
|
2014 |
 |
|
[445] M. Nakazawa, M. Yoshida, T. Hirooka, and K. Kasai, "QAM quantum stream cipher using digital coherent optical transmission," Opt. Express vol. 22, no. 4, pp. 4098-4107, February (2014).
[446] M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, "Adaptive 4~64 QAM real-time coherent optical transmission over 320 km with FPGA-based transmitter and receiver," Opt. Express vol. 22, no. 13, pp. 16520-16527, June (2014).
[447] M. Nakazawa, gExabit optical communication explored using 3M scheme,h Jpn. J. Appl. Phys. vol. 53, 08MA01 (2014).
[448] M. Nakazawa, M. Yoshida, and T. Hirooka, gThe Nyquist laser,h Optica vol. 1, no. 1, pp. 15-22, July (2014).
[449] T. Komukai, H. Kubota, T. Sakano, T. Hirooka, and M. Nakazawa, gPlug-and-play optical interconnection using digital coherent technology for resilient network based on movable and deployable ICT resource unit,h IEICE Trans. Comm. vol. E97-B, no. 7, pp. 1334-1341, July (2014).
[450] T. Hirooka, M. Nakazawa, T. Komukai, and T. Sakano, g100 Gbit/s real-time digital coherent transmission over a 32 km legacy multi-mode graded-index fiber,h IEICE Electron. Express vol. 11, no. 15, 20140563, August (2014).
[451] Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, g60 Gbit/s, 64 QAM LD-based injection-locked coherent heterodyne transmission over 160 km with a spectral efficiency of 9 bit/s/Hz,h IEICE Electron. Express vol. 11, no. 17, 20140601, September (2014).
[452] D. O. Otuya, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, gSingle-channel 1.92 Tbit/s, Pol-Mux-64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 7.5 bit/s/Hz,h Opt. Express, vol. 22, no. 20, pp. 23776-23785, October (2014).
[453] K. Harako, D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa,gHigh-performance TDM demultiplexing of coherent Nyquist pulses using
time-domain orthogonality,h Opt. Express, vol. 22, no. 24, pp. 29456-29464, December (2014).
[454] M. Nakazawa, gEvolution of EDFA from single-core to multi-core and related recent progress in optical communication,h Optical Review, vol. 21, no. 6, pp. 862-874, December (2014).
[455] M. Nakazawa, M. Yoshida, and T. Hirooka, gMeasurement of mode coupling distribution along a few-mode fiber using a synchronous multi-channel OTDR,h Opt. Express, vol. 22, no. 25, pp. 31299-31309, December (2014).
[456] Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, g120 Gbit/s injection-locked homodyne coherent transmission of polarization-multiplexed 64 QAM signals over 150 km,h Opt. Express, vol. 22, no. 25, pp. 31310-31316, December (2014).
|
|
2013 |
 |
|
[434] T. Omiya, M. Yoshida, and M. Nakazawa, g400 Gbit/s 256 QAM-OFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency by using high-resolution FDE,h Opt. Express vol. 21, no. 3, pp. 2632-2641, February (2013).
[435] K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, g160 Gbit/s-300 km single-channel transmission in the 1.1 Êm band with a precise GVD and slope compensation,h Opt. Express, vol. 21, no. 4, pp. 4303-4310, February (2013).
[436] T. Hirooka, K. Harako, P. Guan, and M. Nakazawa, gSecond-order PMD-induced crosstalk between polarization-multiplexed signals and its impact on ultrashort optical pulse transmission,h J. Lightwave Technol. vol. 31, no. 5, pp. 809-814, March (2013).
[437] T. Sakano, Z. M. Fadlullah, T. Kumagai, A. Takahara, T. Ngo, H.Nishiyama, H. Kasahara, S. Kurihara, M. Nakazawa, F. Adachi, and N.Kato, gDisaster resilient networking - a new vision based on movable and deployable resource units,h IEEE Network, vol. 27, no. 4, pp.40-46, July/August (2013).
[438] K. Harako, D. Seya, T. Hirooka, and M. Nakazawa, g640 Gbaud(1.28 Tbit/s/ch) optical Nyquist pulse transmission over 525 km with substantial PMD tolerance,h Opt. Express, vol. 21, no. 18, pp.21063-21076, September (2013).
[439] D. O. Otuya, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, gA single-channel 1.92 Tbit/s, 64 QAM coherent optical pulse transmission over 150 km using frequency-domain equalization,h Opt. Express, vol. 21, no. 19, pp. 22808-22816, September (2013).
[440] M. Nakazawa, gDisaster-resilient networks and optical communication technologies,h Journal of the Institute of Electronics, Information and Communication Engineers, vol. 96, no. 10, pp. 748-751, October (2013).
[441] Y. Wang, K. Kasai, T. Omiya, and M. Nakazawa, g120 Gbit/s, polarization-multiplexed 10 Gsymbol/s, 64 QAM coherent transmission over 150 km using an optical voltage controlled oscillator,h Opt. Express, vol. 21, no. 23, pp. 28290-28296, November (2013).
[442] K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, "A single-channel 1.28 Tbit/s-58 km transmission in the 1.1 Êm band with wideband GVD and slope compensation," Opt. Express vol. 21, no. 23, pp. 29055-29064, November (2013).
[443] M. Yoshida, T. Hirooka, M. Nakazawa, K. Imamura, R. Sugizaki, and T. Yagi, "Detailed comparison between mode couplings along multi-core fibers and structural irregularities using a synchronous multi-channel OTDR system with a high dynamic range," Opt. Express vol. 21, no. 24, pp. 29157-29164, December (2013).
[444] T. Yajima, J. Yamamoto, F. Ishii, T. Hirooka, M. Yoshida, and M. Nakazawa, "Low-loss photonic crystal fiber fabricated by a slurry casting method," Opt. Express vol. 21, no. 25, pp. 30500-30506, December (2013).
|
|
2012 |
 |
|
[422] M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, "Ultrahigh-speed gorthogonalh TDM transmission with an optical Nyquist pulse train," Opt. Express vol. 20, no. 2. pp. 1129-1140, Jan. (2012).
[423] M. Nakazawa, T. Hirooka, M. Yoshida, and K. Kasai, gUltrafast coherent optical communication,h IEEE J. Sel. Top. Quantum Electron., vol. 18, no. 1, pp. 363-376, Jan. (2012).
[424] K. Kasai, D. O. Otuya, M. Yoshida, T. Hirooka, and M. Nakazawa, gSingle-Carrier 800-Gb/s 32 RZ/QAM Coherent Transmission Over 225 km Employing a Novel RZ-CW Conversion Technique,h IEEE Photon. Technol. Lett., vol. 24, no. 5, pp. 416-418, March (2012).
[425] M. Yoshida, T. Omiya, K. Kasai, and M. Nakazawa, "64 QAM real-time coherent transmission using FPGA-based receiver," IEICE Trans. Comm., vol. J95-B, no. 3, pp. 405-413, March (2012)
[426] Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, g1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,h Opt. Express, vol. 20, no. 11, pp. 12508-12514, May (2012).
[427] M. Nakazawa, M. Yoshida, and T. Hirooka, gNondestructive measurement of mode couplings along a multi-core fiber using a synchronous multi-channel OTDR,h Opt. Express, vol. 20, no. 11, pp. 12530-12540, May (2012).
[428] T. Hirooka, P. Ruan, P. Guan, and M. Nakazawa, gHighly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km,h Opt. Express, vol. 20, no. 14, pp. 15001-15008, July (2012).
[429] K. Toyoda, Y. Koizumi, T. Omiya, M. Yoshida, T. Hirooka, and M. Nakazawa, gMarked performance improvement of 256 QAM transmission using a digital back-propagation method,h Opt. Express, vol. 20, no. 18, pp. 19815-19821, August (2012).
[430] T. Hirooka and M. Nakazawa, gLinear and nonlinear propagation of optical Nyquist pulses in fibers,h Opt. Express, vol. 20, no. 18, pp. 19836-19849, August (2012).
[431] Y. Koizumi, K. Toyoda, T. Omiya, M. Yoshida, T. Hirooka, and M. Nakazawa, "512 QAM transmission over 240 km using frequency-domain equalization in a digital coherent receiver," Opt. Express vol. 20, no. 21, pp. 23383-23389, September (2012).
[432] K. Tokuhira, F. Suzuki, M. Yoshida, and M. Nakazawa, gA Cesium optical atomic clock with high optical frequency stability,h IEICE Electron. Express, vol. 9, no. 18, pp. 1496-1503, September (2012).
[433] T. Ono, Y. Hori, M. Yoshida, T. Hirooka, M. Nakazawa, J. Mata, and J. Tsukamoto, gA 31 mW, 280 fs passively mode-locked fiber soliton laser using a high heat-resistant SWNT/P3HT saturable absorber coated with siloxane,h Opt. Express vol. 20, no. 21, pp. 23659-23665, October (2012).
|
|
2011 |
 |
|
[410] D. Yang, S. Kumar, and M. Nakazawa,"Investigation and comparison of digital backward propagation schemes for OFDM and single-carrier fiber-optic transmission systems," Opt. Fiber Technol., vol. 17, no. 1, pp. 84-90, January (2011).
[411] M. Yoshida, S. Okamoto, T. Omiya, K. Kasai, and M. Nakazawa, "256 QAM digital coherent optical transmission using Raman amplifiers," IEICE Trans. Comm., vol. E94-B, no. 2, pp. 417-424, February (2011).
[412] P. Guan, H. C. Hansen Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, "Single-channel 1.28 Tbit/s-525 km DQPSK transmission using ultrafast time-domain optical Fourier transformation and nonlinear optical loop mirror," IEICE Trans. Comm., vol. E94-B, no. 2, pp. 430-436, February (2011).
[413] E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A.Scavennec, F. A. Kish, D. F. Welch, R. Nagarajan, C. H. Joyner, R. P.Schneider Jr., S. W. Corzine, M. Kato, P. W. Evans, M. Ziari, A. G. Dentai,J. L. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D.J. Richardson, F.Poletti, M. N. Petrovich, S. U. Alam, W. H. Loh and D. N. Payne, "Science and technology challenges in XXIst century optical communications," Comptes Rendus Physique, vol. 12, no. 4, pp. 387-416, May (2011).
[414] K. Kasai, A. Mori, and M. Nakazawa,"1.5-μ m Frequency-stabilized λ /4-shifted DFB LD employing an external fiber ring cavity with a linewidth of 2.6 kHz and an RIN of - 135 dB/Hz ," IEEE Photon. Technol. Lett., vol. 23, no. 15, pp. 1046-1048, August (2011).
[415] Y. Wang, K. Kasai, and M. Nakazawa, "Polarization-multiplexed, 10 Gsymbol/s, 64 QAM coherent transmission over 150 km with OPLL-based homodyne detection employing narrow linewidth LDs," IEICE Electron. Express, vol. 8, no. 17, pp. 1444-1449, September (2011).
[416] T. Hirooka, T. Hirano, P. Guan, and M. Nakazawa, "PMD-induced crosstalk in ultrahigh-speed polarization-multiplexed optical transmission in the presence of PDL," J. Lightwave Technol., vol. 29, no. 19, pp. 2963-2970, Oct. (2011).
[417] T. Hirooka, T. Hirano, P. Guan, and M. Nakazawa, "PMD-induced
crosstalk in ultrahigh-speed polarization-multiplexed optical transmission
in the presence of PDL," J. Lightwave Technol., vol. 29, no. 19, pp.
2963-2970, Oct. (2011).
[418] Y. Tomiyama, K. Harako, P. Guan, T. Hirooka, and M. Nakazawa, "Comparison
between polarization-multiplexed DPSK and single-polarization DQPSK in
640 Gbaud, 1.28 Tbit/s?500 km single-channel transmission," Opt. Fiber
Technol., invited paper, vol. 17, no. 5, pp. 439-444, Oct. (2011).
[419] K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, "A 10 GHz
1.1 ps Regeneratively Mode-Locked Yb Fiber Laser in the 1.1 Êm Band,"
Opt. Express, vol. 19, no. 25, pp. 25426-25432, Dec. (2011).
[420] P. Guan, T. Hirano, K. Harako, Y. Tomiyama, T. Hirooka, and M. Nakazawa,
"2.56 Tbit/s/ch Polarization-Multiplexed DQPSK Transmission over 300
km Using Time-Domain Optical Fourier Transformation," Opt. Express,
vol. 19, no. 26, pp. B567-B573, Dec. (2011).
[421] M. Nakazawa, K. Kasai, M. Yoshida, and T. Hirooka, "Novel RZ-CW
conversion scheme for ultra multi-level, high-speed coherent OTDM transmission,"
Opt. Express, vol. 19, no. 26, pp. B574-B580, Dec. (2011).
|
|
2010 |
 |
|
[398] M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, "256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz," IEEE Photon. Technol. Lett., vol. 22, no. 3, pp. 185-187, February (2010).
[399] K. Koizumi, M. Yoshida, and M. Nakazawa, "A 10-GHz optoelectronic oscillator at 1.1 mm using a single-mode VCSEL and a photonic crystal fiber," IEEE Photon. Technol. Lett., vol. 22, no. 5, pp. 293-295, March (2010).
[400] M. Nakazawa, "Recent progress on ultrafast/ultrashort/frequency-stabilized erbium-doped fiber lasers and their applications," Frontiers of Optoelectronics in China, vol. 3, no. 1, pp. 38-44, March (2010).
[401] K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, "Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique," IEEE Photon. Technol. Lett., vol. 22, no. 8, pp. 562-564, April (2010).
[402] F. Shohda, M. Nakazawa, J. Mata, and J. Tsukamoto, "A 113 fs fiber laser operating at 1.56 mm using a cascadable film-type saturable absorber with P3HT-incorporated single-wall carbon nanotubes coated on polyamide," Opt. Express, vol. 18, no. 9, pp. 9712-9721, April (2010).
[403] F. Shohda, Y. Hori, M. Nakazawa, J. Mata, and J. Tsukamoto, "131 fs, 33 MHz all-fiber soliton laser at 1.07 Êm with a film-type SWNT saturable absorber coated on polyimide," Opt. Express, vol. 18, no. 11, pp. 11223-11229, May (2010).
[404] M. Nakazawa, "Advances in information communication technology based on lasers," Journal of Applied Physics (Ouyou-Butsuri, in Japanese), vol. 79, no. 6, pp. 508-516, June (2010).
[405] T. Hirano, P. Guan, T. Hirooka, and M. Nakazawa, "640-Gb/s/channel single-polarization DPSK transmission over 525 km with ultrafast time-domain optical Fourier transformation," IEEE Photon. Technol. Lett., vol. 22, no. 14, pp. 1042-1044, July (2010).
[406] T. Omiya, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa, "60 Gbit/s 64 QAM-OFDM coherent optical transmission with a 5.3 GHz bandwidth," IEICE Electron. Express, vol. 7, no. 15, pp. 1163-1168, August (2010).
[407] K. S. Abedin and M. Nakazawa, "Real time monitoring of a fiber fuse using an optical time-domain reflectometer," Opt. Express, vol. 18, no. 20, pp. 21315-21321, Septermber (2010).
[408] T. Morisaki, M. Yoshida, and M. Nakazawa, "Optical frequency-tunable Cs atomic clock with a 9.19GHz mode-hop-free fiber laser," IEICE Electron. Express, vol. 7, no. 21, pp. 1652-1658, November (2010).
[409] P. Guan, H. C. Hansen Mulvad, K. Kasai, T. Hirooka, and M. Nakazawa, "High Time-Resolution 640-Gb/s Clock Recovery Using Time-Domain Optical Fourier Transformation and Narrowband Optical Filter," IEEE Photon. Technol. Lett., vol. 22, no. 23, pp. 1735-1737, December (2010).
|
|
2009 |
 |
|
[387] M. Nakazawa, "Ultra-multilevel coherent QAM optical transmission technology," Review of Laser Engineering (in Japanese), vol. 37, no. 3, pp. 101-106, March (2009).
[388] K. S. Abedin, M. Nakazawa, and T. Miyazaki, "Backreflected radiation due to a propagating fiber fuse," Opt. Express, vol. 17, no. 8, pp. 6525-6531, April (2009).
[389] S. Masuda, S. Niki, and M. Nakazawa, "Environmentally stable, simple passively mode-locked fiber ring laser using a four-port circulator," Opt. Express, vol. 17, no. 8, pp. 6613-6622, April (2009).
[390] K. Kasai and M. Nakazawa, "FM-eliminated C2H2 frequency-stabilized laser diode with an RIN of ?135 dB/Hz and a linewidth of 4 kHz," Opt. Lett., vol. 34, no. 14, pp. 2225-2227, July (2009).
[391] M. Nakazawa, "20 years of EDFA and future prospects," IEICE Trans. Electron. (in Japanese), vol. J92-C, no. 8, pp. 339-359, August (2009).
[392] T. Hirooka, M. Okazaki, T. Hirano, P. Guan, M. Nakazawa, and S. Nakamura, "All-optical demultiplexing of 640-Gb/s OTDM-DPSK signal using a semiconductor SMZ switch," IEEE Photon. Technol. Lett., vol. 21, no. 20, pp. 1574-1576, October (2009).
[393] P. Guan, M. Okazaki, T. Hirano, T. Hirooka, and M. Nakazawa, "Low-penalty 5x320 Gbit/s/single-channel WDM DPSK transmission over 525 km using time-domain optical Fourier transformation," IEEE Photon. Technol. Lett., vol. 21, no. 21, pp. 1579-1581, November (2009).
[394] P. Guan, M. Okazaki, T. Hirano, T. Hirooka, and M. Nakazawa, "Low-penalty 5x320 Gbit/s/single-channel WDM DPSK transmission over 525 km using time-domain optical Fourier transformation," IEEE Photon. Technol. Lett., vol. 21, no. 21, pp. 1579-1581, November (2009).
[395] K. Koizumi, M. Yoshida, and M. Nakazawa, "10-GHz 11.5-ps pulse generation from a single-mode gain-switched InGaAs VCSEL at 1.1 mm," IEEE Photon. Technol. Lett., vol. 21, no. 22, pp. 1704-1706, November 2009.
[396] K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, "10 Gbit/s photonic crystal fiber transmissions with 1.1 mm directly-modulated single-mode VCSEL," IEICE Electron. Express, vol. 6, no. 22, pp. 1615-1620, November 2009.
[397] F. Shohda, M. Nakazawa, R. Akimoto, and H. Ishikawa, "An 88 fs fiber soliton laser using a quantum well saturable absorber with an ultrafast inersubband transition," Opt. Express, vol. 17, no. 25, pp. 22499-22504, December 2009.
|
|
2008 |
 |
|
[372] K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, "The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission," IEICE Electron. Express, vol. 5, no. 1, pp. 6-10, January (2008).
[373] M. Yoshida, H. Goto, K. Kasai, and M. Nakazawa, "64 and 128 coherent QAM optical transmission over 150 km using frequency-stabilized laser and heterodyne PLL detection," Opt. Express, vol. 16, no. 2, pp. 829-840, January (2008).
[374] M. Nakazawa and M. Yoshida, "Scheme for independently stabilizing the repetition rate and optical frequency of a laser using a regenerative mode-locking technique," Opt. Lett., vol. 33. no. 10, pp. 1059-1061, May (2008).
[375] T. Hirooka, M. Nakazawa, and K. Okamoto, "Bright and dark 40 GHz parabolic pulse generation using a picosecond optical pulse train and an arrayed waveguide grating ," Opt. Lett., vol. 33, no. 10, pp. 1102-1104, May (2008).
[376] T. Hirooka, M. Okazaki, and M. Nakazawa, "A straight-line 160-Gb/s DPSK transmission over 1000 km with time-domain optical Fourier transformation," IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 1094-1096, July (2008).
[377] H. T. Quynhanh, A. Suzuki, M. Yoshida, T. Hirooka, and M. Nakazawa, "A l/4-shifted distributed-feedback laser diode with a fiber ring cavity configuration having an OSNR of 85 dB and a linewidth of 7 kHz," IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1578-1580, September (2008).
[378] H. Goto, M. Yoshida, T. Omiya, K. Kasai, and M. Nakazawa, "Polarization and frequency division multiplexed 1Gsymbol/s, 64 QAM coherent optical transmission with 8.6bit/s/Hz spectral efficiency over 160km," IEICE Electron. Express, vol. 5, no. 18, pp. 776-781, September (2008).
[379] Y. Nakajima, H. Inaba, F. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, "Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation," Opt. Comm., vol. 281, no. 17, pp. 4484-4487, September (2008).
[380] T. Hirooka, K. Osawa, M. Okazaki, M. Nakazawa, and H. Murai, "Stimulated Brillouin scattering in ultrahigh-speed in-phase RZ and CS-RZ OTDM transmission," IEEE Photon. Technol. Lett., vol. 20, no. 20, pp. 1694-1696, October (2008).
[381] T. Hirooka and M. Nakazawa, "All-optical 40-GHz time-domain Fourier transformation using XPM with a dark parabolic pulse," IEEE Photon. Technol. Lett., vol. 20, no. 22, pp. 1869-1871, November (2008).
[382] T. Hirooka, M. Okazaki, P. Guan, and M. Nakazawa, "320-Gb/s single-polarization DPSK transmission over 525 km using time-domain optical Fourier transformation," IEEE Photon. Technol. Lett., vol. 20, no. 22, pp. 1872-1874, November (2008).
[383] M. Nakazawa, K. Kasai, and M. Yoshida, "C2H2 absolutely optical frequency-stabilized and 40 GHz repetition-rate-stabilized, regeneratively mode-locked picosecond erbium fiber laser at 1.53 m," Opt. Lett., vol. 33, no. 22, pp. 2641-2643, November (2008).
[384] F. Shohda, T. Shirato, M. Nakazawa, J. Mata, and J. Tsukamoto, "147 fs, 51 MHz soliton fiber laser at 1.56 m with a fiber-connector-type SWNT/P3HT saturable absorber," Opt. Express, vol. 16, no. 25, pp. 20943-20948, December (2008).
[385] M. Okazaki, P. Guan, T. Hirooka, M. Nakazawa, and T. Miyazaki, "160-Gb/s 200-km field transmission experiment with large PMD using a time-domain optical Fourier transformation technique," IEEE Photon. Technol. Lett., vol. 20, no. 24, pp. 2192-2194, December (2008).
[386] F. Shohda, T. Shirato, M. Nakazawa, K. Komatsu, and T. Kaino, "A passively mode-locked femtosecond soliton fiber laser at 1.5 Êm with a CNT-doped polycarbonate saturable absorber," Opt. Express, vol. 16, no. 26, pp. 21191-21198, December (2008).
|
|
2007 |
 |
|
[356] H. Hasegawa, Y. Oikawa, and M. Nakazawa, "10 Gbit/s 2 km photonic crystal fiber transmission with 850 nm directly modulated singlemode VCSEL," Electron. Lett., vol. 43, no. 2, pp. 117-119, January (2007).
[357] M. Nakazawa, M. Yoshida, and T. Hirooka, "Ultra-stable regeneratively mode-locked laser as an opto-electronic microwave oscillator and its application to optical metrology," IEICE Trans. Electron., Invited paper, vol. E90-C, no. 2, pp. 443-449, February (2007).
[358] K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, "Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers," IEICE Electron. Express, vol. 4, no. 3, pp. 77-81, February (2007).
[359] Y. Oikawa, H. Hasegawa, K. Suzuki, Y. Inoue, T. Hirooka, and M. Nakazawa, "4x10 Gb/s WDM transmission over a 5-km-long photonic crystal fiber in the 800-nm region," IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 613-615, April (2007).
[360] A. Suzuki, Y. Takahashi, M.Yoshida, and M. Nakazawa, "A CW polarization-maintaining λ/4 shifted DFB Er-doped fiber laser at 1.54 μm," IEICE Electron. Express, vol. 4, no. 8, pp. 251-257, April (2007).
[361] J. Hongo, K. Kasai, M. Yoshida, and M. Nakazawa, "1-Gsymbol/s 64-QAM coherent optical transmission over 150 km," IEEE Photon. Technol. Lett., vol. 19, no. 9, pp. 638-640, May (2007).
[362] T. Hirayama, M. Yoshida, M. Nakazawa, K. Hagimoto, and T. Ikegami, "Mode-locked laser-type optical atomic clock with an optically pumped Cs gas cell," Opt. Lett., vol. 32, no. 10, pp. 1241-1243, May (2007).
[363] H. Hasegawa, Y. Oikawa, T. Hirooka, and M. Nakazawa, "40 Gbit/s-2 km photonic crystal fiber transmission with 850 nm singlemode VCSEL," Electron. Lett., vol. 43, no. 11, pp. 642-644, May (2007).
[364] M. Yoshida, T. Hirayama, M. Nakazawa, K. Hagimoto, and T. Ikegami, "Regeneratively mode-locked fiber laser with a repetition rate stability of 4.9~10-15 using a hydrogen maser phase-locked loop," vol. 32, no. 13, pp. 1827-1829, July (2007).
[365] M. Yoshida, K. Kasai, and M. Nakazawa, "Mode-hop-free, optical frequency tunable 40 GHz mode-locked fiber laser," IEEE J. Quantum Electron., vol. 43, no. 8, pp. 704-708, August (2007).
[366] M. Nakazawa, H. Hasegawa, and Y. Oikawa, "10-GHz 8.7-ps pulse generation from a single-mode gain-switched AlGaAs VCSEL at 850 nm," IEEE Photon. Technol. Lett,, vol. 19, no. 16, pp. 1251-1253, August (2007).
[367] H. Hasegawa, Y. Oikawa, and M. Nakazawa, "A 10-GHz optoelectronic oscillator at 850 nm using a single-mode VCSEL and a photonic crystal fiber," IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1451-1453, October (2007).
[368] A. Suzuki, Y. Takahashi, M. Yoshida, and M. Nakazawa, "An ultralow noise and narrow linewidth λ/4-shifted DFB Er-doped fiber laser with a ring cavity configuration," IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1463-1465, October (2007).
[369] M. Nakazawa, T. Hirooka, and M. Yoshida, "Optical fiber transmission of standard signals using optical combs," The Review of Laser Engineering (in Japanese), vol. 35, no. 10, pp. 649-653, October (2007).
[370] T. Hirayama, M. Yakabe, M. Yoshida, M. Nakazawa, Y. Koga, and K. Hagimoto, "An ultrastable Cs optical atomic clock with a 9.1926-GHz regeneratively mode-locked fiber laser," IEICE Trans. Electron. (in Japanese), vol. J90-C, no. 12, pp. 977-987, December (2007).
[371] M. Yoshida, A. Ono, and M. Nakazawa, "10 GHz regeneratively mode-locked semiconductor optical amplifier fiber ring laser and its linewidth characteristics," Opt. Lett., vol. 32, no. 24, pp. 3513-3515, December (2007).
|
|
2006 |
 |
|
[344] M. Nakazawa and T. Hirooka, "ABCD matrix formalism of time-domain optical Fourier transformation for distortion-free pulse transmission," IEICE Electron. Express, vol. 3, no. 4, pp. 74-79, February (2006).
[345] H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, "10 Gb/s transmission over 5 km at 850 nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD," IEICE Electron. Express, vol. 3, no.6, pp. 109-114, March (2006).
[346] M. Nakazawa, S. Nakahara, T. Hirooka, M. Yoshida, T. Kaino, and K. Komatsu, "Polymer saturable absorber materials in the 1.5 mm band using poly-methyl-methacrylate and polystyrene with single-wall carbon nanotubes and their application to a femtosecond laser," Opt. Lett., vol. 31, no. 7, pp. 915-917, April (2006).
[347] M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, "20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilised laser," Electron. Lett., vol. 42, no. 12, pp. 710-712, June (2006).
[348] H. Inaba, Y. Daimon, F. -L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, "Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb," Opt. Express, vol. 14, no. 12, pp. 5223-5231, June (2006).
[349] T. Hirooka and M. Nakazawa, "Optical adaptive equalization of high-speed signals using time-domain optical Fourier transformation," Invited paper, J. Lightwave Technol., vol. 24, no. 7, pp. 2530-2540, July (2006).
[350] Y. Oikawa, H. Hasegawa, T. Hirooka, M.Yoshida, and M. Nakazawa, "Ultra-broadband dispersion measurement of photonic crystal fiber with pico-second streak camera and group-delay-frees supercontinuum," IEICE Trans. Electron. (in Japanese), vol. J89-C, no. 7, pp. 450-457, July (2006).
[351] T. Hirooka, T. Kumakura, K. Osawa, and M. Nakazawa, "Comparison of 40 GHz optical demultiplexers using SMZ switch and EA modulator in 160 Gbit/s-500 km OTDM transmission," IEICE Electronics Express, vol. 3, no. 17, pp. 397-403, September (2006).
[352] M. Nakazawa and T. Hirooka, "Recent progress and future prospects for high-speed optical transmission technology using an ultrashort optical pulse train," Invited paper, IEICE Trans. Comm.(in Japanese), vol. J89-B, no. 11, pp. 2067-2081, November (2006).
[353] K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, "Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser," IEICE Electron. Express, vol.3, no. 22, pp. 487-492, November (2006).
[354] A. Suzuki, Y. Takahashi, and M. Nakazawa, "A polarization-maintained, ultranarrow FBG filter with a linewidth of 1.3 GHz," IEICE Electron. Express, vol. 3, no. 22, pp. 469-473, November (2006).
[355] T. Hirooka, K. Hagiuda, T. Kumakura, K. Osawa, and M. Nakazawa, "160 Gb/s-600 km OTDM transmission using time-domain optical Fourier transformation," IEEE Photon. Technol. Lett., vol. 18, no. 24, pp. 2647-2649, December (2006).
|
|
2005 |
 |
|
[332] M. Nakazawa and T. Hirooka, "Distortion-free transmission of ultrashort optical pulses using time-domain optical Fourier transformation," Japanese Journal of Optics (in Japanese), vol. 34, no. 1, pp. 26-31, January (2005).
[333] T. Hirooka, S. Ono, K. Hagiuda, and M. Nakazawa, "Stimulated Brillouin scattering in dispersion-decreasing fiber with ultrahigh-speed femtosecond soliton pulse compression," Opt. Lett., vol. 30, no. 4, pp. 364-366, Feb. (2005).
[334] K. Haneda, M. Yoshida, H. Yokoyama, Y. Ogawa, and M. Nakazawa, "Measurements of longitudinal linewidth and relative intensity noise in ultrahigh-speed mode-locked semiconductor lasers, " IEICE Trans. Electron., vol. J88-C, no. 3, pp. 161-168, March (2005).
[335] K. Hagiuda, T. Hirooka, M. Nakazawa, S. Arahira, and Y. Ogawa, "40-GHz, 100-fs stimulated-Br/p>llouin-scattering-free pulse generation by combining a mode-locked laser diode and a dispersion-decreasing fiber," Opt. Lett., vol. 30, no. 6, pp. 670-672, March (2005).
[336] K. Haneda, M. Yoshida, M. Nakazawa, H. Yokoyama, and Y. Ogawa, "Linewidth and relative intensity noise measurements of longitudinal modes in ultrahigh-speed mode-locked laser diodes," Opt. Lett., vol. 30, no. 9, pp. 1000-1002, May (2005).
[337] M. Yakabe, K. Nito, M. Yoshida, M. Nakazawa, Y. Koga, K. Hagimoto, and T. Ikegami, "Ultrastable cesium atomic clock with a 9.1926-GHz regeneratively mode-locked fiber laser," Opt. Lett., vol. 30, no. 12, pp. 1512-1514, June (2005).
[338] H. Hasegawa, T. Hirooka, and M. Nakazawa, "A new method for optimum dispersion designing of zero-dispersion and dispersion-flattened photonic crystal fibers,"IEICE Trans. Electron. (in Japanese), vol. J88-C, no. 7, pp. 519-527, July (2005).
[339] T. Hirooka, M. Nakazawa, F. Futami, and S. Watanabe,"Ultrahigh-speed distortion-free optical pulse transmission using time-domain optical Fourier transformation,"IEICE Trans. Comm. (in Japanese), vol. J88-B, no. 8, pp. 1402-1410, August (2005).
[340] M. Nakazawa and T. Hirooka, "Distortion-free optical transmission using time-domain optical Fourier transformation and transform-limited optical pulses," J. Opt. Soc. Am. B, vol. 22, no. 9, pp. 1842-1855, September (2005).
[341] M. Yakabe, K. Nito, M. Yoshida, and M. Nakazawa, "Microwave frequency tuning characteristics of an opto-microwave oscillator made of fiber laser and its application to Ramsey fringe observation of Cs atoms," IEICE Trans. Comm., vol. J88-B, no. 9, pp. 1829-1836, September (2005).
[342] K. Kasai, M. Yoshida, and M. Nakazawa, "Acetylene (13C2H2) stabilized single-polarization fiber laser," IEICE Trans. Electron., vol. J88-C, no. 9, pp. 708-715, September (2005).
[343] H. Hasegawa, M. Kikegawa, M. Yoshida, T. Hirooka, and M. Nakazawa, "Observation of optimum air-hole tapering of splicing between a conventional fiber and a photonic crystal fiber and analysis of reduction of Fresnel reflection," IEICE Trans. Electron., vol. J88-C, no. 10, pp. 779-787, October (2005).
|
|
2004 |
 |
|
[326] T. Hirooka and M. Nakazawa, "Parabolic pulse generation
by use of a dispersion-decreasing fiber with normal group-velocity
dispersion, " Opt. Lett., vol. 29, no. 5, pp. 498-500, March
(2004).
[327] M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, "Ideal
distortion-free transmission using optical Fourier transformation
and Fourier transform-limited optical pulses, " IEEE Photon.
Technol. Lett., vol. 16, no. 4, pp. 1059-1061, April (2004).
[328] T. Hirooka, Y. Hori, and M. Nakazawa, "Gaussian and
sech approximations of mode field profiles in photonic crystal fibers,
" IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1071-1073,
April (2004).
[329] M. Yoshida, T. Yaguchi, S. Harada, and M. Nakazawa, "A
40 GHz regeneratively and harmonically mode-locked erbium-doped
fiber laser and its longitudinal-mode characteristics, " IEICE
Trans. Electron., vol. E87-C, no. 7, pp. 1166-1172, July (2004).
[330] T. Hirooka, M. Nakazawa, F. Futami, and S. Watanabe, "A
new adaptive equalization scheme for 160 Gbit/s transmitted signals
using time-domain optical Fourier transformation, " IEEE Photon.
Technol. Lett., vol. 16, no. 10, pp. 2371-2373, October (2004).
[331] M. Nakazawa, "Photonic crystal fibers and their applications, " Japanese Journal of Applied Physics (Ouyou-Butsuri, in Japanese), vol. 73, no. 11, pp. 1409-1417, November (2004).
|
|
2003 |
 |
|
[320] M. Nakazawa, "Optical amplifiers and their application to fiber
lasers," Japanese Journal of Optics (in Japanese), vol. 32, no. 2,
pp. 119-128, February (2003).
[321] M. Nakazawa, "High precision frequency standards using mode-locked
fiber lasers," The Review of Laser Engineering, vol. 31, no. 7,
pp. 443-449, July (2003).
[322] M. Nakazawa, "Ultrafast OTDM transmission technology," Journal
of IEICE (in Japanese), vol. 86, no. 8, pp. 588-593, August (2003).
[323] M. Yoshida, M. Kikegawa, N. Nishimura, and M. Nakazawa, "Observation
of huge Fresnel reflection at a splicing point between a photonic
crystal fiber and a conventional fiber and its suppression," IEICE
of Japan (in Japanese), vol. J86-C, no. 9, pp. 1007-1016, September
(2003).
[324] S. Choi, M. Yoshida, and M. Nakazawa, "Measurements of longitudinal
linewidths of 10 GHz, picosecond mode-locked erbium-doped fiber
lasers using a heterodyne detection method," IEICE of Japan (in
Japanese), vol. J86-C, no. 10, pp. 1054-1062, October (2003).
[325] M. Nakazawa, "Photonic crystal fibers and their application
to ultrashort pulse propagation," Japanese Journal of Optics (in
Japanese), vol. 32, no. 10, pp. 606-612, October (2003). |
|
2002 |
 |
|
[316] M. Nakazawa, T. Yamamoto, and K. R. Tamura, "Ultrahigh-speed
OTDM transmission beyond 1 Tera bit-per-second using a femtosecond
pulse train," IEICE Trans. Electron., vol. E85-C, no. 1, pp.
117-125 January (2002).
[317] T. Inui, T. Komukai, M. Nakazawa, K. Suzuki, K. R. Tamura,
K. Uchiyama, and T. Morioka, "Adaptive dispersion slope equalizer
using a nonlinearly chirped fiber Bragg grating pair with a novel
dispersion
detection technique," IEEE Photon. Technol. Lett., vol. 14, no.
4, pp. 549-551, April (2002).
[318] M. Nakazawa, "Photonic crystal fibers," The Review of Laser
Engineering, vol. 30, no. 8, pp. 426-434, August (2002).
[319] H. Inaba, A. Onae, Y. Akimoto, T. Komukai, and M. Nakazawa,
"Observation of acetylene molecular absorption line with tunable,
single-frequency, and mode-hop-free erbium-doped fiber ring laser,"
IEEE J.
Quantum Electron., vol. 38, no. 10, pp. 1325-1330, October (2002).
|
|
2001 |
 |
|
[302] A. Sahara, T. Komukai, E. Yamada and M. Nakazawa, "
40 Gbit/s return-to-zero transmission over 500 km of standard fibre
using chirped fibre Bragg grating with small group delay ripples,"
Electron. Lett., vol. 37, pp. 8-9, January (2001).
[303]S. Yagi, T. Maruyama, H. Nagai, T. Izawa, K. Washio, Y. Nagaki,
K. Goto, M. Nakazawa, and T. Yuuzu, "Development of lasers
in the 20th century and prospect in the future," The Review
of Laser Engineering, vol. 29, no. 1, pp. 37-55 January (2001).
[304] S. Suzuki, Y. Kokubun, M. Nakazawa, T. Yamamoto, and S. T.
Tak," Ultrashort optical pulse transmission characteristics
of vertically coupled microring resonator add/drop filter,"
IEEE/OSA, J. Lightwave Technol., vol. 19, no.2, pp. 266-271, February
(2001).
[305] T. Inui, T. Komukai, M. Nakazawa," Highly efficient
tunable fiber Bragg grating filters using multilayer piezoelectric
transducers," Opt. Commun., vol. 190, pp. 1-4, April (2001).
[306] T. Inui, T. Komukai, M. Nakazawa," Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers," Opt. Commun., vol. 190, pp. 1-4, April (2001).
[307] M. Nakazawa, A. Sahara, and H. Kubota," Propagation
of a soliton-like nonlinear pulse in average normal group-velocity
dispersion and its unsuitability for a high-speed, long-distance
optical communication," J. Opt. Soc. Amer., vol. B-18, pp.
409-418, April (2001).
[308] T. Yamamoto and M. Nakazawa," Third- and fourth-order
active dispersion compensation with a phase modulator in a terabit-per-second
optical time-division multiplexed transmission," Opt. Lett.,
vol. 26, pp. 647-649, May (2001).
[309] M. Nakazawa and K. Suzuki, " Cesium optical atomic clock:
an optical pulse that tells the time," Opt. Lett., vol. 26,
pp. 635-637, May (2001).
[310] K. R. Tamura, and M Nakazawa, "A polarization-maintaining
pedestal-free femtosecond pulse compressor incorporating an ultrafast
dispersion-imbalanced nonlinear optical loop mirror," IEEE
Photon. Technol. Lett., vol. 13, no. 5, pp. 526-528, May (2001).
[311] K. R. Tamura and M. Nakazawa, "54-fs, 10-GHz soliton
generation from a polarization-maintaining dispersion-flattened
dispersion-decreasing fiber pulse compressor," Opt. Lett.,
vol. 26, no.11, pp. 762-764, June (2001).
[312] S. Kawanishi, T. Yamamoto, M. Nakazawa, and M. M. Fejer, "High sensitivity waveform measurement with optical sampling using quasi-phasematched mixing in LiNbO3 waveguide," Electron. Lett., vol. 37, no. 13, pp. 842-844, June (2001).
[313] T. Komukai, T. Inui, and M. Nakazawa, "Origin of group
delay ripple in chirped fiber Bragg gratings and its effective reduction
method," IEIEC of Japan, C, vol. J84-C, no.8, pp. 673-680,
August (2001).
[314] T. Yamamoto, K. R. Tamura, and M. Nakazawa, "1.28 Tbit/s-70km
OTDM femtosecond-pu1se transmission using third- and fourth-order
simultaneous dispersion compensation with a phase modu1ator,"
IEIEC of Japan, B, vol. J84-B, no. 9, pp. 1587-1597, September (2001).
[315] K. R. Tamura, Y. Inoue, K. Sato, T. Komukai, A. Sugita, and M. Nakazawa, "A discretely tunable mode-locked laser with 32 wavelengths and 100-GHz channel spacing using an arrayed waveguide grating," IEEE Photon. Technol. Lett., vol. 13, no. 11, pp. 1227-1229, November (2001).
|
|
2000 |
 |
|
[285] K. Suzuki, H. Kubota, A. Sahara, and M. Nakazawa, "640
Gbit/s (40 Gbit/s x 16 channel) dispersion-managed DWDM soliton
transmission over 1,000 km with a spectral efficiency of 0.4 bit/Hz",
Electron. Lett., vol. 36, No. 5, pp.443-445, March (2000).
[286] T. Yamamoto, E. Yoshida, K. Tamura, K. Yonenaga, and M. Nakazawa,
"640 Gbit/s optical TDM transmission over 92 km through a dispersion-managed
fiber consisting of single-mode fiber and "reverse dispersion
fiber", IEEE Photon. Technol. Lett., Vol. 12, No. 3, pp. 353-355,
March (2000).
[287] T. Komukai, T. Inui, and M. Nakazawa, "The design of
dispersion equalizers using chirped fiber Bragg gratings",
IEEE J. Quantum Electron., vol. 36, pp. 409-417, April (2000).
[288] M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada and A. Sahara,"
Ultrahigh-speed, long-distance TDM and WDM soliton transmission
technologies," IEEE, J. Selected Topics in Quantum Electronics,
vol. 6, no. 2, pp. 1-34, April (2000).
[289] T. Yamamoto, E. Yoshida, K. R. Tamura, and M. Nakazawa,"100
km transmission of 640 Gbit/s OTDM signal using femtosecond pulses,"
IEICE of Japan (in Japanese), Vol. J83-B No. 5, pp. 625-633, May
(2000).
[290] K. R. Tamura, H. Kubota, and M. Nakazawa, " Fundamentals
of stable continuum generation at high repetition rate," IEEE,
Photon. Tech. Lett., vol. 36, No. 7, pp. 773-779, July (2000).
[291] H. Inaba, Y. Akimoto, K. Tamura, E. Yoshida, T. Komukai,
and M. Nakazawa, " Experimental observation of mode behavior
in erbium-doped optical fiber ring laser," Optics Commun.,
vol. 180, pp. 121-125, June(2000).
[292] A. Sahara, T. Inui, T. Komukai, H. Kubota, and M. Nakazawa,
" 40-Gb/s RZ transmission over transoceanic distance in a dispersion
managed standard fiber using a new inline synchronous modulation
method," IEEE, Photon. Tech. Lett., vol. 12 No. 6, pp. 720-722,
June (2000).
[293] T. Komukai, T. Inui, and M. Nakazawa, " Group delay
ripple reduction and reflectivity increase in a chirped fiber Bragg
grating by multiple-overwriting of a phase mask with an electron
beam," IEEE, Photon. Tech. Lett., vol. 12, No. 7, July (2000).
[294] M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara,
" Recent progress in soliton transmission technology,"
American Inst. of Physics, Chaos (Invited paper), vol. 10, No. 3,
pp. 486-514, September (2000).
[295] A. Sahara, T. Inui, T. Komukai, H. Kubota, and M. Nakazawa,
" 40-Gb/s RZ transmission over transoceanic distance in a dispersion
managed standard fiber using a modified inline synchronous modulation
method," IEEE/OSA, J. Lightwave Technol., vol. 18, No. 10,
pp. 1364-1373, October (2000).
[296] H. Kubota and M. Nakazawa, " Simulation method for optical
soliton pulse propagation," IECO of Japan (in Japanese), vol.
83, No. 11, pp. 866-871, November (2000).
[297] H. Kubota, K. Tamura, and M. Nakazawa, " Effect of ASE
noise on coherence for supercontinuum light source by soliton compression,"
Transaction of IEICE of Japan (in Japanese), vol. J83-C, No. 11,
pp. 1005-1011, November (2000).
[298] M. Nakazawa, T. Yamamoto, K. R. Tamura, " 1.28 Tbit/s-70
km OTDM transmission using third- and fourth-order simultaneous
dispersion compensation with a phase modulator," Electron.,
Lett., vol. 36, No. 24, pp. 2027-2029, November (2000).
[299] M. Nakazawa and E.Yoshida," A 40 GHz, 850 fs regeneratively
FM mode-locked polarization-maintaining erbium fiber ring laser,"
IEEE, Photon. Tech. Lett.,, vol. 12, No. 12, pp. 1613-1615 December(2000).
[300] T. Inui, T. Komukai, and M. Nakazawa, " A wavelength-tunable
Dispersion equalizer using a nonlinearly chirped fiber Bragg grating
pair mounted on multilayer piezoelectric transducer," Photon.
Tech. Lett., vol. 12, pp. 1668-1670, December (2000).
[301] M. Nakazawa," Solitons for breaking barriers to terabit/second
WDM and OTDM transmission in the next Millennium," IEEE, J,
Selected Topics in Quantum Electronics (Millennium Issue invited
paper), vol. 6, No. 6, pp. 1332-1343, November/December(2000). |
|
1999 |
 |
|
[265] A. Sahara, H. Kubota, and M. Nakazawa, "Ultra-high speed
soliton transmission in presence of polarisation mode dispersion
using in-line synchronous modulation," Electron. Lett., vol.
35, pp. 76-77, January (1999).
[266] Y. Yamabayashi, M. Nakazawa, and K. Takiguchi," Terabit
transmission technologies," NTT R&D Journal Special Issue
on Challenges to Terabit/s Communication Technologies (In Japanese),
vol. 48, pp. 43-58, January (1999).
[267] M. Nakazawa, "Mode-locked fiber laser technology for
ultrahigh-speed TDM optical transmission," NTT R&D Journal
Special Issue on Challenges to Terabit/s Communication Technologies
(In Japanese), vol. 48, pp. 59-66, January (1999).
[268] M. Nakazawa, K. Suzuki and H. Kubota," Single-channel
80 Gbit/s soliotn transmission over 10000 km using in-line synchronous
modulation," Electron. Lett., vol. 35, pp. 162-163, January
(1999).
[269] K. R. Tamura, and M. Nakazawa," Spectral-smoothing and
pedestal reduction of wavelength tunable quasi-adiabatically compressed
femtosecond solitons using a dispersion-flattened dispersion-imbalanced
loop mirror," IEEE, Photon. Tech. Lett., vol. 11, pp.230-233,
February (1999).
[270] A. Sahara, H. Kubota, and M. Nakazawa," Comparison of
the dispersion allocated WDM (10 Gbit/sx 10 channels) optical soliton
and NRZ systems using a Q map," Opt. Commun., vol. 160, pp.
139-145, February (1999).
[271] M. Nakazawa, H. Kubota, and K. Tamura," Random evolution
and coherence degradation of a high-order optical soliton train
in the presence of noise," Opt. Lett., vol. 24, pp. 318-320,
March (1999).
[272] K. R. Tamura and M. Nakazawa," Femtosecond soliton generation
over 32-nm wavelength range using a dispersion-flattened dispersion-decreasing
fiber," IEEE, Photon. Tech. Lett., vol. 11, pp. 319-321, March
(1999).
[273] T. Yamamoto, E. Yoshida, and M. Nakazawa," Demultiplexing
of subterabit TDM signal by using ultrafast nonlinear optical loop
mirror," IEICE of Japan, C-I (In Japanese), vol. J82, pp. 109-116,
March (1999).
[274] Y. Yamabayashi, H. Toba, and M. Nakazawa," State-of-the-art
and future perspectives of time division multiplexing (TDM) high
bit rate optical transmission," The Review of Laser Engineering
(In Japanese), vol. 27, pp. 231-239, April(1999).
[275] K. Suzuki, H. Kubota, E. Yamada, A. Sahara, and M. Nakazawa,"
40 Gbit/s soliton transmission field experiment using dispersion
management," The Review of Laser Engineering (In Japanese),
vol. 27, pp. 268-273, April (1999).
[276] E. Yoshida and M. Nakazawa," Ultrashort pulse generation
at high repetition rate from mode-locked fiber lasers," The
Review of Laser Engineering (In Japanese), vol. 27, pp. 274-280,
April (1999).
[277] E. Yamada, T. Imai, T. Komukai, and M. Nakazawa," 10
Gbit/s soliton transmission over 2900 km using 1.3 msinglemode
fibres and dispersion compensation using chirped fibre Bragg gratings,"
Electron. Lett., vol. 35, pp. 728-729, April (1999).
[278] E. Yoshida and M. Nakazawa," Measurement of the timing
jitter and pulse energy fluctuation of a PLL regeneratively mode-locked
fiber laser," IEEE Photonics Tech. Lett., vol. 11, pp. 548-550,
May (1999)
[279] T. Komukai, T. Imai, M. Nakazawa," Design of dispersion
equalizers using chirped Bragg gratings," IEICE of Japan (In
Japanese), Vol. J82-C-I, pp. 359-369, June (1999).
[280] M. Nakazawa, K Suzuki, and H. Kubota, "160 Gbit/s (80
Gbit/s x 2 channels) WDM soliton transmission over 10,000 km using
in-line synchronous modulation", Electron. Lett., vol. 35,
No. 16, pp. 1358-1359, September (1999).
[281] K. Tamura, T. Komukai, and M. Nakazawa, "A new optical
routing technique with a subcarrier clock controlled wavelength
converter", IEEE Photon. Technol. Lett., vol. 11, No. 11, pp.
1491-1493, November (1999).
[282] E. Yoshida, K Tamura, and M. Nakazawa," Mode-locked
fiber ring lasers," The Review of Laser Engineering (In Japanese),
vol. 27, No.11, pp. 756-761, November (1999).
[283] H. Kubota, K. Tamura, and M. Nakazawa, "Analyses of
coherence-maintained ultrashort optical pulse trains and supercontinuum
generation in the presence of soliton-amplified spontaneous-emission
interaction", J. Opt. Soc. Am. B, vol. 16, No. 12, pp. 2223-2232,
December (1999).
[284] E. Yoshida, N. Shimizu, and M. Nakazawa, "A 40 GHz,
0.9 ps regeneratively mode-locked fiber laser with a tuning range
of 1530 - 1560 nm", IEEE Photon. Technol. Lett., vol. 11, No.
12, pp.1587-1589, December (1999). |
|
1998 |
 |
|
[246] M. Nakazawa, K. Suzuki, H. Kubota, A. Sahara, and E. Yamada,"
160 Gbit/s WDM (20 Gbit/s x 8 channels) soliton transmission over
10000 km using in-line synchronous modulation and optical filtering,"
Electron. Lett., vol. 34, No. 1, pp. 103-104, January (1998).
[247] K. Suzuki, H. Kubota, A. Sahara and M. Nakazawa,"40Gbit/s
single channel optical soliton transmission over 70000 km using
in-line synchronous modulation and optical filtering," Electron.
Lett., vol. 34, No. 1, pp. 98-99, January (1998).
[248] K. Tamura, E. Yoshida, and M. Nakazawa," Forced phase
modulation and self phase modulation effects in dispersion-tuned
mode-locked fiber lasers," IEICE Trans. Electron., vol. E81-C,
No. 2, pp. 195-200, February (1998).
[249] E. Yoshida, K. Tamura, and M. Nakazawa," Intracavity
dispersion effects of a regeneratively and harmonically FM mode-locked
erbium-doped fiber laser," IEICE Trans. Electron., vol. E81-C,
No. 2, pp. 189-194, February (1998).
[250] T. Yamamoto, and M. Nakazawa," Efficient optical pulse
compression with optical gain via four-wave mixing," IEICE
of Japan, C-I, vol. J81-C-I, No. 3, pp. 148-157, March (1998).
[251] T. Komukai, and M. Nakazawa," Long-phase error-free
fiber Bragg gratings," IEEE, Photon. Tech. Lett., vol. 10,
No. 5, pp. 687-689, May (1998).
[252] M. Nakazawa, E. Yoshida, T. Yamamoto, and A. Sahara,"
TDM single channel 640 Gbit/s transmission experiment over 60 km
using 400 fs pulse train and walk-off free, dispersion flattened
nonlinear optical loop mirror," Electron. Lett., vol. 34, No.
9, pp. 907-908, April (1998).
[253] T. Yamamoto, E. Yoshida, and M. Nakazawa," Ultrafast
nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM
signals," Electron. Lett., vol. 34, No. 10, pp. 1013-1014,
May (1998).
[254] E. Yoshida, T. Yamamoto, A. Sahara, and M. Nakazawa,"
320 Gbit/s TDM transmission over 120 km using 400 fs pulse train,"
Electron. Lett., vol. 34, No. 10, pp. 1004-1005, April (1998).
[255] T. Imai, T. Komukai, and M. Nakazawa," Dispersion tuning
of a linearly chirped fiber Bragg grating without a center wavelength
shift by applying a strain gradient," IEEE, Photon. Tech. Lett.,
vol. 10, No. 6, pp. 845-847, June (1998).
[256] M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida,"
Coherence degradation in the process of supercontinuum generation
in an optical fiber," Optical Fiber Technology, 4, pp.215-223,
April, (1998)
[257] M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura," Time-domain
ABCD matrix formalism for laser mode-locking and optical pulse transmission,"
IEEE J. Quantum Electron., vol. 34, No. 7, pp. 1075-1081, July (1998).
[258] H. Inaba, Y. Akimoto, K. Tamura, E Yoshida, T. Komukai, and
M. Nakazawa," A single-frequency and single-polarization fiber
ring laser using a 5 GHz fiber Bragg grating," IEICE of Japan,
C-I, vol. J81-C-I, No. 8, pp. 451-459, August (1998).
[259] E. Yoshida and M. Nakazawa," Wavelength tunable 1.0
ps pulse generation in 1.530-1.555 mm region from PLL, regeneratively
modelocked fibre laser," Electron. Lett., vol. 34, No. 18,
pp 1753-1754, September (1998).
[260] T. Komukai and M. Nakazawa, "Fabrication of non-linearly
chirped fiber gratings for higher-order dispersion compensation,"
Opt. Commun., vol. 154, pp. 5-8 (1998)
[261] K. Tamura and M. Nakazawa, "Timing jitter of solitons
compressed in dispersion-decreasing fibers," Opt. Lett., vol.
23, No. 17, pp. 1360-1362, September (1998).
[262] A. Sahara, K. Suzuki, H. Kubota, T. Komukai, E. Yamada, T.
Imai, K. Tamura and M. Nakazawa," Single channel 40 Gbit/s
soliton transmission field experiment over 1000 km in Tokyo metropolitan
optical loop network using dispersion compensation," Electron.
Lett., vol. 34, pp. 2154-2155, October (1998).
[263] K. Suzuki, H. Kubota, T. Komukai, E. Yamada, T. Imai, K.
Tamura, A. Sahara and M. Nakazawa," 40 Gbit/s soliton transmission
field experiment over 1360 km using in-line soliton control,"
Electron. Lett., vol. 34, pp. 2143-2144, October (1998).
[264] T. Imai, T. Komukai, and M. Nakazawa, "Second- and third-order
dispersion compensation of picosecond pulses achieved by combining
two nonlinearly chirped fibre Bragg gratings," Electron. Lett.,
vol. 34, pp. 2422-2423, December (1998). |
|
1997 |
 |
|
[228] T. Komukai, T. Yamamoto, T. Imai, and M. Nakazawa,"
Application of fiber Bragg gratings to spectral filtering,"
IEICE of Japan, C-I, Vol. J80-C-I, No.1, pp. 32-40, January (1997).
[229] T. Imai and M. Nakazawa," Optical cable amplifier,"
The Laser Society of Japan, Rev. of Laser Eng., vol. 25, pp. 121-125
February (1997).
[230] E. Yoshida, K. Tamura, E. Yamada, and M. Nakazawa,"
Femtosecond fiber laser at 10 GHz and its application as a multi-wavelength
optical pulse source," IEICE of Japan, C-I, vol. J80-C-I, No.
2, pp. 70-77, February (1997).
[231] T. Yamamoto and M. Nakazawa," Highly efficient four-wave
mixing in an optical fiber with intensity dependent phase matching,"
IEEE, Photon.Tech. Lett., vol. 9, No.3, pp. 327-329, March (1997).
[232] M. Nakazawa, A. Sahara, and H. Kubota," Marked increase
in the power margin through the use of dispersion-allocated soliton
and evaluation of transmission characteristics using Q mapping---Comparison
between D-A soliton, NRZ pulse and RZ pulse at zero GVD---,"
IEICE of Japan, B-I, vol. J80-B-I, N. 3, pp. 148-158, March (1997).
[233] E. Yamada, H. Kubota, T. Yamamoto, A. Sahara, and M. Nakazawa,"
10 Gbit/s, 10,600 km, dispersion-allocated soliton transmission
using conventional 1.3 mm singlemode fibers," Electron. Lett.,
vol. 33, No. 7, pp. 602-603, March (1997).
[234] T. Yamamoto, T. Imai, T. Komukai, and M. Nakazawa,"
Demutliplexing and routing of TDM signal using wavelength conversion
by fiber four-wave mixing and wavelength routing by fiber gratings,"
IEICE of Japan, C-I, vol. J80-C-I, No. 5, pp. 186-194, May (1997).
[235] T. Imai, T. Komukai, T. Yamamoto, and M. Nakazawa,"
Wavelength tunable Q-switched fiber laser using fiber Bragg gratings,"
IEICE of Japan, C-I, Vol. J80-C-I, No. 5, pp. 195-203, May (1997).
[236] A. Sahara, H. Kubota, and M. Nakazawa," Experiments
and analyses of 20 Gbit/s soliton transmission systems using installed
optical fiber cables," IEICE of Japan, C-I, vol. J80-C-I, No.
5, pp. 204-212, May (1997).
[237] M. Nakazawa, K. Suzuki, H. Kubota, A. Sahara, and E. Yamada,"100
Gbit/s WDM (20 Gbit/sx5 channels) soliton transmission over 10,000
km using in-line synchronous modulation and optical filtering,"
Electron. Lett., vol. 33, No. 14, pp. 1233- 1234, July (1997).
[238] M. Nakazawa and E. Yoshida and K. Tamura," Ideal phase-locked-loop
(PLL) operation of a 10 GHz erbium-doped fibre laser using regenerative
modelocking as an optical voltage controlled oscillator," Electron.
Lett., vol. 33, No. 15, pp. 1318-1319, July(1997).
[239] T. Komukai, K. Tamura, and M. Nakazawa," An efficient
0.04-nm apodized fiber Bragg grating and its application to narrow-band
spectral filtering," IEEE, Photon. Tech. Lett., vol. 9, No.
7, pp. 934-936, July (1997).
[240] A. Sahara, H. Kubota, and M. Nakazawa, "Optimum fiber
dispersion for two-step dispersion-allocated optical soliton, RZ
at zero GVD and NRZ systems," IEEE, Photon. Tech. Lett., vol.
9, No. 8, pp. 1179-1181, Aug., (1997).
[241] M. Nakazawa, E. Yamada, H. Kubota, T. Yamamoto, and A. Sahara,"
Numerical and experimental comparison of soliton, RZ pulse and NRZ
pulses under two-step dispersion allocation," Electron. Lett.,
vol. 33, No. 17, pp. 1480-1482, Aug., (1997).
[242] M. Nakazawa, "Advantages of dispersion-allocated soliton
by comparison with conventional NRZ and RZ pulse transmission at
zero GVD," TOPS, OSA, vol. 12, System Technologies, pp. 299-304,
(1997).
[243] M. Nakazawa," Recent progress in optical soliton communication
and its future prospects-Analogy between optical pulse transmission
and laser mode-locking," Journal of Applied Physics (In Japanese,
Ouyou-Butsuri), vo. 66, no. 9, pp. 922-932 (1997).
[244] E. Yoshida and M. Nakazawa," Low-threshold 115-GHz continuous-wave
modulational-instability erbium-doped fiber laser," Opt. Lett.,
vol. 22, No. 18, pp. 1409-1411, September (1997).
[245] T. Yamamoto and M. Nakazawa," Active optical pulse compression
with a gain of 29.0 dB by using four-wave mixing in an optical fiber,"
IEEE, Photon. Tech. Lett., vol. 9, No. 12, pp. 1595-1597, December
(1997). |
|
1996 |
 |
|
[204] K. Tamura and M. Nakazawa, "Pulse compression by nonlinear
pulse evolution with reduced optical wave breaking in erbium - doped
fiber amplifiers", Opt. Lett., vol. 21, No. 1, pp. 68-70, Jan.,
(1996).
[205] M. Nakazawa," Telecommunications-Rides a New Wave,"
Photonics Spectra, Feb., pp. 97-104, (1996).
[206] M. Nakazawa, K. Tamura, and E. Yoshida, " Supermode
noise suppression in a harmonically modelocked fibre laser by selfphase
modulation and spectral filtering," Electron. Lett., vol. 32,
Feb., pp. 461-462, (1996).
[207] M. Nakazawa, H. Kubota, and K. Tamura, "Nonlinear pulse
transmission through an optical fiber at zero-average group velocity
dispersion," IEEE, Photon. Tech. Lett., vol. 8, No. 3, March,
pp. 452-454, (1996).
[208] M. Nakazawa," Recent progress in ultra-high speed optical
soliton communication," IEICE of Japan, vol. 79, No. 3, March,
pp. 259-271, (1996).
[209] M. Nakazawa, K. Suzuki, H. Kubota, Y. Kimura, E. Yamada,
K. Tamura, T. Komukai, and T. Imai,"40 Gbit/s WDM(10 Gbit/sx4
unequally spaced channels) soliton transmission over 10000 km using
synchronouos modulation and narrow band optical filtering,"
Electron. Lett., vol. 32, No. 9, April, pp. 828-829, (1996).
[210] K. Tamura, E. Yoshida, E. Yamada, and M. Nakazawa,"
Generation of a 0.5 W average power train of femtosecond pulses
at 10 GHz in the 1.55 mm region" Electron.Lett., vol . 32,
pp. 835-836 April (1996).
[211] K. Tamura, E. Yoshida, and M. Nakazawa," Generation
of 10 GHz pulse trains at 16 wavelengths by spectrally slicing a
high power femtosecond source, " Electron. Lett., vol. 32,
No. 18, pp. 1691-1692, April (1996).
[212] A. Sahara, H. Kubota, and M. Nakazawa," Q-factor contour
mapping for evaluation of optical transmission systems:soliton against
NRZ against RZ pulse at zero group velocity dispersion," Electron.
Lett., vol. 32, May, pp. 915-916, (1996).
[213] M. Nakazawa, E. Yoshida, E. Yamada, and Y. Kimura,"
A repetition-rate stabilized and tunable, regeneratively mode-locked
fiber laser using an offset-locking technique," Jpn. J. Appl.
Phys., vol. 35, June, pp. L691-694, (1996).
[214] M. Nakazawa, "Recent progress in long-distance soliton
communication," Laser Society of Japan, Rev. of Laser Eng.,
vol. 24, No. 6, June, pp. 633-640 (1996).
[215] M. Nakazawa, K. Suzuki, and E. Yamada, "NOLM oscillator
and its injection locking technique for timing clock extraction
and demutiplexing," Electron. Lett., vol. 32, No. 12, pp. 1122-1123,
June (1996).
[216] M. Nakazawa, E. Yoshida, and K. Tamura," 10 GHz, 2 ps
regenratively and harmonically FM mode-locked erbium-fibre ring
laser," Electron. Lett., vol. 32, No. 14, July, pp. 1285-1287,
(1996).
[217] M. Nakazawa and E. Yoshida," Direct generation of a
750 fs, 10 GHz pulse train from a regeneratively mode-locked fibre
laser with multiple harmonic modulation," Electron. Lett.,
vol. 32, No. 14, pp. 1291-1293, July (1996).
[218] E. Yoshida and M. Nakazawa," 80-200 GHz erbium-doped
fibre laser using a rational harmonic mode-locking technique,"
Electron. Lett., vol. 32, No. 15, pp. 1371-1372, July (1996).
[219] M. Nakazawa, K. Suzuki, H. Kubota, and E. Yoshida,"
60 Gbit/s WDM (20 Gbit/sx3 unequally spaced channels) soliton transmission
over 10000 km using in-line synchronous modulation and optical filtering,"
Electron. Lett., vol. 32, No. 18 , pp. 1686-1687, August (1996).
[220] M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura," Marked
increase in the power margin through the use of a dispersion allocated
soliton," IEEE, Photon. Tech. Lett., vol. 8, No. 8, pp. 1088-1090,
Aug., (1996).
[221] M. Nakazawa, H. Kubota, and E. Yamada," Generation and
transmission of optical soliton pulses," IEICE of Japan, C-I,
vol. J79-C-I, No. 8, pp. 265-277, August (1996).
[222] K. Tamura, T. Komukai, and M. Nakazawa," Optimization
of power extraction in a high-power soliton fiber ring laser containing
a chirped fiber grating," Appl. Phys. Lett., vol. 69, No. 9
, pp. 1535-1537 Sept. (1996).
[223] T. Imai, T. Komukai, T. Yamamoto, and M. Nakazawa,"
A wavelength tunable Q-switched erbium-doped fiber laser with fiber
Bragg grating mirrors," Jpn. J. Appl. Phys. vol. 35, No. 10A,
pp. L1275-1277, October (1996).
[224] T. Komukai, and M. Nakazawa," Fabrication of high -quality
long-fiber Bragg grating by monitoring 3.1 eV radiation (400 nm)
from GeO2 defects," IEEE, Photon. Tech. Lett., vol. 8, No.
11, pp. 1495-1497, November (1996).
[225] K. Tamura and M. Nakazawa," Dispersion-tuned harmonically
mode-locked fiber laser for self-synchronization to external clock,"
Opt. Lett., vol. 21, NO. 24, pp. 1984-1986, December (1996).
[226] K. Tamura and M. Nakazawa," Pulse energy equalization
in harmonically FM mode-locked lasers with slow gain," Opt.
Lett., vol. 21, No.23, pp. 1930-1932, December (1996).
[227] T. Komukai, T. Yamamoto, T. Imai, M. Nakazawa, "Fabrication
of high quality fiber Bragg grating and its wavelength tuning",
IEICE of Japan, C-1, Vol. J79-C-1, No.11, pp. 413-419, November
(1996) |
|
1995 |
 |
|
[177] H. Kubota and M. Nakazawa, "Soliton Transmission Control
for Ultra High Speed System", IEICE Trans. Electron., vol.
E78-C, No. 1, pp. 5-11, Jan., (1995).
[178] T. Sugawa, K. Kurokawa, H. Kubota, and M. Nakazawa, "Polarization
Dependence of Soliton Interactions in Femtosecond Soliton Transmission",
IEICE Trans. Electron., vol. E78-C, No. 1, pp. 28-37, Jan., (1995).
[179] M. Nakazawa and H. Kubota, "Optical soliton communication
in a positively and negatively dispersion-allocated optical fibre
transmission line", Electron. Lett., vol. 31, No. 3, pp. 216-217,
Feb., (1995).
[180] T. Komukai, Y. Miyajima, and M. Nakazawa, "An in-line
optical band pass filter with fiber gratings and an optical circulator
and its application to pulse compression", Jpn. J. Appl. Phys.,vol.
34, Feb., pp. L230-L232, (1995).
[181] T. Komukai, Y. Miyajima, and M. Nakazawa, "In-line fiber
grating-type optical bandpass filter tuned by applying lateral stress",
Jpn. J. Appl. Phys., vol. 34, March, pp. L306-308, (1995).
[182] E. Yoshida, Y. Kimura, and M. Nakazawa, "20 GHz, 1.8
ps Pulse Generation from a Regeneratively Mode-Locked Erbium-Doped
Fibre Laser and its Femtosecond Pulse Compression", Electron.
Lett., vol. 31, March, pp. 377-378, (1995).
[183] M. Nakazawa, K. Suzuki, E. Yoshida, T. Kitoh and M. Kawachi,
"160 Gbit/s soliton data transmission over 200km", Electron.
Lett., Vol. 31, No. 7, pp. 565 - 566, April., (1995).
[184] T. Yamamoto, T. Imai, T. Komukai, Y. Miyajima and M. Nakazawa,
"Optical demultiplexing and routing of a TDM signal by using
four - wave mixing and a novel wavelength router with optical circulators
and fiber gratings", Electron. Lett., vol. 31, No. 9, pp. 744
- 745, Apr., (1995).
[185] M. Nakazawa, Y. Kimura, K. Suzuki, H. Kubota, T. Komukai,
E. Yamada, T. Sugawa, E. Yoshida, T. Yamamoto, T. Imai, A. Sahara,
H.Nakazawa, O.Yamauchi and M. Umezawa, "Field demonstration
of soliton transmission at 10 Gbit/s over 2000 km in Tokyo metropolitan
optical loop network", Electron. Lett., vol. 31, No. 12, pp.
992 - 993, June., (1995).
[186] M. Nakazawa and H. Kubota, "Construction of Dispersion
- Allocated Soliton Transmission Line Using Conventional Dispersion
- Shifted Nonsoliton Fibers", Jpn. J. Appl. Phys., vol. 34,
Part 2, No.6A, pp. L681 - L683, June., (1995).
[187] K. Tamura, Y. Kimura and M. Nakazawa, "Femtosecond pulse
generation over 82 nm wavelength span from passively modelocked
erbium - doped fiber laser", Electron. Lett., vol. 31, No.
13, pp. 1062 - 1063, June., (1995).
[188] M. Nakazawa and K. Sizuki, "10Gbit/s pseudorandom dark
soliton data transmission over 1200 km", Electron. Lett.,vol.
31, No. 13, pp. 1076 - 1077, June., (1995).
[189] M. Nakazawa and K. Suzuki, "Generation of a pseudorandom
dark soliton data train and its coherent detection by one - bit
- shifting with a Mach - Zehnder interferometer", Electron.
Lett., Vol. 31, No. 13, pp. 1084 - 1085, June., (1995).
[190] T. Sugawa, H. Kubota and M. Nakazawa, "Polarization
dependence of femtosecond soliton - soliton interactions in dispersion
-shifted fiber", Opt. Lett., Vol. 20, No. 13, pp. 1453 - 1455,
July, (1995).
[191] M. Nakazawa and H. Kubota, "Analyses of the Dispersion
- Allocated Bright and Dark Solitons", Jpn. J. Appl. Phys.,
vol. 34, Part 2, No.7B, pp. L889 - L891, July., (1995).
[192] K. Tamura, E. Yoshida, T. Sugawa and M. Nakazawa, "Broadband
light generation by femtosecond pulse amplification with stimulated
Raman scattering in a high - power erbium - doped fiber amplifier",
Opt. Lett., vol. 20, No. 15, pp. 1631 - 1633, Aug., (1995).
[193] E. Yamada, E. Yoshida, T. Kitoh and M. Nakazawa, "Generation
of terabit per second optical data pulse train", Electron.
Lett., vol. 31, No. 16, pp. 1342 - 1343, Aug., (1995).
[194] M. Nakazawa, Y. Kimura, K. Suzuki, H. Kubota, T. Komukai,
E. Yamada, T. Sugawa, E. Yoshida, T. Yamamoto, T.Imai, A. Sahara,
O.Yamauchi and M. Umezawa, "Soliton transmission at 20 Gbit/s
over 2000 km in Tokyo metropolitan optical network", Electron.
Lett., vol. 31, No. 17, pp. 1478 - 1479, Aug., (1995).
[195] K. Suzuki and M. Nakazawa, "Recent Progress in Optical
Soliton Communication", Optical Fiber Technology, 1, pp.289
- 308, Aug., (1995)
[196] M. Nakazawa and Y. Kimura, "Optical cable amplifiers",
Electron. Lett., vol. 31, No. 20, pp. 1744 - 1445, Sep., (1995).
[197] M. Nakazawa, A. Sahara, T. Imai, T. Yamamoto, E. Yamada and
Y. Kimura, "A Novel Technique for Measuring Group Velocity
Dispersion of an Installed Ultralong Fiber by Using Erbium - Doped
Fiber Amplifiers", Jpn. J. Appl. Phys., vol. 34, Part 2, No.9A,
pp. L1167 - L1169, Sep., (1995).
[198] T. Yamamoto, T. Imai, T. Komukai, Y. Miyajima and M. Nakazawa,
"High speed optical path routing by using four - wave mixing
and a wavelength router with fiber gratings and optical circulators",
Optics Communications, 120 , pp.245 - 248, Nov., (1995).
[199] E. Yoshida, Y. Kimura and M. Nakazawa, "Ultrahigh Speed
Picosecond - Femtosecond Fiber Lasers", Optoelectronics Devices
and Technologies, vol. 10, No. 4, pp. 531 - 542, Sep., (1995).
[200] K. Tamura and M. Nakazawa, "Optimizing power extraction
in stretched - pulse fiber ring lasers", Appl. Phys. Lett.,
Vol. 67, No. 25, pp.3691 - 3693, Dec., (1995).
[201] K. Tamura, T. Komukai, T. Yamamoto, T. Imai, E. Yoshida and
M. Nakazawa, "High energy, sub - picosecond pulse compression
at 10GHz using a fiber / fiber - grating pulse compressor",
Electron. Lett., Vol. 31, No. 25, pp. 2194 - 2195, Dec., (1995).
[202] T. Komukai and M. Nakazawa, "Tunable single frequency
erbium doped fiber ring lasers using fiber grating etalons",
Jpn. J. Appl. Phys., vol. 34, Part 2, No. 6A, L679-L680, June, (1995)
[203] T. Komukai and M. Nakazawa, "Efficient fiber gratings
formed on high NA dispersion-shifted fiber and dispersion-flattened
fiber", Jpn. J. Appl. Phys., vol. 34, Part 2, No. 10A, L1286-L1287,
October, (1995) |
|
1994 |
 |
|
[164] K. Suzuki, E. Yamada, H. Kubota, and M. Nakazawa, "Optical
soliton communication system using erbium-doped fiber amplifiers",
Fiber Integ. Opt., vol. 13, No. 1, p. 45-64, Jan., (1994).
[165] M. Nakazawa, "Soliton Transmission in Telecommunication
Networks," IEEE Communications Magazine, vol. 32, No. 3, pp.
34-41, March (1994).
[166] E. Yamada and M. Nakazawa, "Reduction of Amplified Spontaneous
Emission from a Transmitted Soliton Signal Using a Nonlinear Amplifying
Loop Mirror and a Nonlinear Optical Loop Mirror", IEEE J. Quantum
Electron., vol. 30, No. 8, pp. 1842-1850, Aug., (1994).
[167] M. Nakazawa," Ultrahigh speed optical soliton communication,"
O plus E (in Japanese), Invited paper, No. 177, pp. 53-64, Aug.,
(1994).
[168] M. Nakazawa, K. Suzuki, H. Kubota, E. Yamada, and, Y. Kimura,
"Straight-line soliton data transmission at 20 Gbit/s beyond
Gordon-Haus limit", Electron. Lett., vol. 30, No. 16, pp. 1331-1332,
Aug., (1994).
[169] K. Kurokawa, H. Kubota, and M. Nakazawa, "Femtosecond
Soliton Interactions in a Distributed Erbium-Doped Fiber Amplifier",
IEEE, J. Quantum Electron., vol. 30, pp. 2220-2226, Sep., (1994).
[170] M. Nakazawa, E. Yoshida, and Y. Kimura, "Ultrastable
harmonically and regeneratively modelocked polarisation-maintaining
erbium fibre ring laser", Electron. Lett., vol. 30, No. 19,
pp. 1603-1604, Sep., (1994).
[171] E. Yoshida, Y. Kimura, and M. Nakazawa, "Femtosecond
Erbium-Doped Fiber Laser with Nonlinear Poarization Rotation and
Its Soliton Compression", Jpn. J. Appl. Phys., vol. 33, No.
10, Part 1, pp. 5779-5783, Oct., (1994).
[172] E. J. Greer, Y. Kimura, K. Suzuki, E. Yoshida, and M. Nakazawa,
"Generation of 1.2 ps, 10 GHz pulse train from all-optically
modelocked, erbium fibre ring laser with active nonlinear polarization
rotation", Electron. Lett., vol. 30, No. 21, pp. 1764-1765,
Oct., (1994).
[173] M. Nakazawa, E. Yoshida, E. Yamada, K. Suzuki, T. Kitoh,
and M. Kawachi, "80 Gbit/s soliton data transmission over 500
km with unequal amplitude solitons for timing clock extraction",
Electron. Lett., vol. 30, No. 21, pp. 1777-1778, Oct., (1994).
[174] E. Yamada, K. Suzuki, and M. Nakazawa, "Subpicosecond
optical demultiplexing at 10 GHz with zero-dispersion, dispersion-flattened,
nonlinear fibre loop mirror controlled by 500 fs gain-switched laser
diode", Electron. Lett., vol. 30, No. 23, pp. 1966-1967, Nov.,
(1994).
[175] T. Sugawa, K. Kurokawa, H. Kubota, and M. Nakazawa, "Soliton
self-frequency shift in orthogonally polarised femtosecond solitons",
Electron. Lett., vol. 30, No. 23, pp. 1963-1964, Nov., (1994).
[176] M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, "Generation
of a 170 fs, 10 GHz transform-limited pulse train at 1.55 mm using
a dispersion-decreasing, erbium-doped active soliton compressor",
Electron. Lett., vol. 30, No. 24, pp. 2038-2040, Nov., (1994). |
|
1993 |
 |
|
[148] M. Nakazawa, E. Yoshida, and Y. Kimura, "Generation
of 98 fs optical pulses directly from an erbium-doped fiber ring
laser at 1.57 mm", Electron. Lett., vol. 29, No. 1, pp. 63-64,
Jan, (1993).
[149] Y. Kimura, and M. Nakazawa, "Gain characteristics of
erbium-doped fiber amplifiers with high erbium concentration",
Jpn. J. Appl. Phys., vol. 32, pp. 1120-1125, Mar, (1993).
[150] M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota, Y. Kimura and
M. Takaya, "Experimental demonstration of soliton data transmission
over unlimited distances with soliton control in time and frequency
domains", Electron. Lett., vol. 29, No. 9, pp. 729-730, Apr.,
(1993).
[151] E. Yamada, K. Suzuki, and M. Nakazawa," Reduction of
ASE noise from transmitted soliton signals with a nonlinear amplifying
optical loop mirror," IEICE of Japan (in Japanese), vol. J76-C-I,
No. 4, pp. 81-88, Apr., (1993).
[152] E. Yamada, K. Suzuki, H. Kubota, and M. Nakazawa, "Ultrahigh
speed optical soliton communication using erbium-doped fiber amplifiers",
IEICE Trasns. Commun. vol. E76-B, pp. 410-419, Apr., (1993).
[153] M. Nakazawa, K. Suzuki, H. Kubota and Y. Kimura, "Self-Q-switching
and mode locking in a 1.53-mm fiber ring laser with saturable absorption
in erbium-doped fiber at 4.2 K", Opt. Lett., vol. 18, No. 8,
pp. 612-615, Apr., (1993).
[154] H. Kubota and M. Nakazawa," Soliton transmission control
in time and frequency domains," IEICE of Japan (in Japanese),vol.
J76-C-I, No. 5, pp. 147-157, May(1993).
[155] E. Yamada, K. Wakita and M. Nakazawa, "30 GHz pulse
train generation from a multiquantum well electro-absorption intensity
modulator", Electron. Lett., vol. 29, No. 10, pp. 845-846,
May(1993).
[156] T. Sugawa, Yoshida, Y. Miyajima and M. Nakazawa, "1.6
ps pulse generation from a 1.3 mm Pr3+-doped fluoride fibre laser",
Electron. Lett., vol. 29, No. 10, pp. 902-903, May(1993).
[157] M. Nakazawa, E. Yoshida, T. Sugawa and Y. Kimura, "Continuum
suppressed, uniformly repetitive 136 fs pulse generation from an
erbium-doped fiber laser with nonlinear polarisation rotation",
Electron. Lett., vol. 29, No. 15, pp. 1327-1328, July (1993).
[158] H. Kubota and M. Nakazawa, "Soliton transmission control
in time and frequency domains", IEEE J. Quantum Electron.,
vol. 29, No. 7, pp. 2189-2197, July (1993).
[159] M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota and Y. Kimura,
"Straight-line soliton data transmission over 2000 km at 20
Gbit/s and 1000 km at 40 Gbit/s using erbium-doped fiber amplifiers",
Electron. Lett., vol. 29, No. 16, pp. 1474-1475, Aug., (1993).
[160] E. Yoshida, Y. Kimura, and M. Nakazawa, "Femtosecond
erbium-doped fiber lasers and a soliton compression technique",
Jpn. J. Appl. Phys., vol. 32, pp. 3461-3466, Aug., (1993).
[161] M. Nakazawa, K. Suzuki, H. Kubota and Y. Kimura, "Active
Q switching and mode locking in a 1.53-mm fiber ring laser with
saturable absorption in erbium-doped fiber at 4.2 K", Opt.
Lett., vol. 18, No. 18, pp. 1526-1528, Sep., (1993).
[162] H. Kubota and M. Nakazawa, "Soliton transmission with
long amplifier spacing under soliton control", Electron. Lett.,
vol. 29, No. 20, pp. 1780-1781, Sep., (1993).
[163] M. Nakazawa and H. Kubota, "Physical interpretation
of reduction of soliton interaction forces by bandwidth limited
amplification", Electron. Lett., vol. 29, No. 2, pp. 226-227,
Jan., (1993) |
|
1992 |
 |
|
[132] M. Nakazawa, Y. Kimura, K. Kurokawa, and K. Suzuki, "Self-induced-transparency
solitons in an erbium-doped fiber waveguide," Phys. Rev. A,
vol. 45, pp. 23-26 (1992).
[133] H. Kubota and M. Nakazawa,"Partial soliton communication
system," Opt. Commun., vol. 87, pp. 15-18 (1992).
[134] E. Yoshida, Y. Kimura, and M. Nakazawa," Laser diode-pumped
femtosecond erbium-doped fiber laser with a sub-ring cavity for
repetition rate control," Appl. Phys. Lett., vol. 60, pp. 932-934
(1992).
[135] M. Nakazawa, K. Suzuki, Y. Kimura, and H. Kubota, "Coherent
p-pulse propagation with pulse breakup in an erbium-doped fiber
waveguide amplifier," Phys. Rev., vol. 45, pp. 2682-2685 (1992).
[136] M. Nakazawa and H. Kubota," Physical interpretation
of reduction of soliton interaction forces by bandwidth limited
amplification," Electron. Lett., vol. 28, pp. 958-960 (1992).
[137] M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota and Y. Kimura,"
10 Gbit/s, 1200 km error-free soliton data transmission using erbium-doped
fibre amplifiers," Electron. Lett., vol. 28, pp. 817-818 (1992).
[138] M. Nakazawa, K. Suzuki, and E. Yamada," 20 Gbit/s, 1020
km penalty-free soliton data transmission using erbium-doped fibre
amplifiers," Electron. Lett., vol. 28, pp. 1046-1047 (1992).
[139] M. Nakazawa, H. Kubota, E. Yamada, and K. Suzuki," Infinite-distance
soliton transmission with soliton controls in time and frequency
domains," Electron. Lett., vol. 28, pp. 1099-1100 (1992).
[140] K. Kurokawa and M. Nakazawa," Femtosecond soliton transmission
characteristics in an ultralong erbium-doped fiber amplifier with
different pumping configuration," IEEE, J. Quantum Electron.
vol. QE-28, pp. 1922-1929 (1992).
[141] Y. Kimura and M. Nakazawa," Gain characteristics of
erbium-doped fibre amplifiers with high erbium concentration,"
Electron. Lett., vol. 28, pp. 1420-1421 (1992).
[142] M. Nakazawa, Y. Kimura, and K. Suzuki," Self induced
transparency soliton and coherent Î pulse propagation
in erbium-doped fibers and amplifiers," Review of Laser Eng.
(in Japanese), vol. 20, No. 8, pp. 638-652 (1992).
[143] K. Suzuki, H. Kubota, and M. Nakazawa, "Soliton communication
using erbium-doped fiber amplifiers," Review of Laser Eng.
(in Japanese), Vol. 20, No. 8, pp. 662-672 (1992).
[144] E. Yoshida, Y. Kimura, and M. Nakazawa," Femtosecond
erbium fiber laser with a nonlinear amplifying loop mirror pumped
by laser diodes and the repetition rate control of output pulses,"
IECE of Japan (in Japanese),vol. J75-C-I, No.10, pp. 613-621 (1992).
[145] K. Kurokawa, H. Kubota, and M. Nakazawa, "Soliton self-frequency
shift accelerated by femtosecond soliton interaction", Electron
Lett., vol. 28, No. 22, pp. 2052-2053 (1992).
[146] M. Nakazawa and Y. Kimura, "Electron-beam vapour-deposited
erbium-doped glass waveguide laser at 1.53 mm", Electron. Lett.,
vol. 28, No. 22, pp. 2054-2055, Oct., (1992)
[147] K. Kurokawa, H. Kubota and M. Nakazawa, "Significant
modification of femtosecond soliton interaction in gain medium by
small subpulses", Electron. Lett., vol. 28, No. 25, pp. 2334-2335,
Dec., (1992) |
|
1991 |
 |
|
[114] Y. Kimura, K. Suzuki, and M. Nakazawa," Noise figure
characteristics of Er3+-doped fibre amplifier pumped in 0.8 mm band,"
Electron. Lett., vol. 27, pp. 146-147(1991).
[115] E. Yamada and M. Nakazawa, "Automatic intensity control
of an optical transmission line using enhanced gain saturation in
cascaded optical amplifiers," IEEE, J. Quantum Electron., vol.
QE-27, pp. 146-151 (1991).
[116] M. Nakazawa, H. Kubota, K. Kurokawa, and E. Yamada,"
Femtosecond optical soliton transmission over long distances using
adiabatic trapping and soliton standardization," J. Opt. Soc.
Amer., B, vol. 8, pp. 1811-1817 (1991).
[117] H. Kubota and M. Nakazawa,"Recent progress on optical
soliton communication," IEICE of Japan, Invited Paper, Transactions,
vol. E-74, pp. 1373-1378 (1991).
[118] K. Kurokawa and M. Nakazawa, "Wavelength-dependent amplification
characteristics of femtosecond erbium-doped fiber amplifiers,"
Appl. Phys. Lett., vol. 58, pp. 2871-2873 (1991).
[119] E. Yamada, K. Suzuki, and M. Nakazawa, "Stabilization
of optical output power using gain saturation of EDFA and its application
to soliton communication," IECE of Japan (in Japanese), vol.
J74-C-I, pp. 167-175 (1991).
[120] M. Nakazawa, E. Yamada, and H. Kubota,"Coexistence of
self-induced transparency soliton and nonlinear Schrdinger
soliton," Phys. Rev. Lett., vol. 66, pp. 2625-2628 (1991).
[121] M. Nakazawa and Y. Kimura," Lanthanum codoped erbium
fibre amplifier," Electron. Lett., vol. 27, pp. 1065-1067 (1991).
[122] M. Nakazawa, E. Yamada, H. Kubota, and K. Suzuki,"10
Gbit/s soliton data transmission over one million kilometres,"
Electron. Lett., vol. 27, pp. 1270-1272 (1991).
[123] E. Yamada, K. Suzuki, and M. Nakazawa," 10 Gbit/s single-pass
soliton transmission over 1000 km," Electron. Lett., vol. 27,
1289-1290 (1991).
[124] M. Nakazawa and K. Kurokawa," Femtosecond soliton transmission
in 18 km-long dispersion-shifted distributed erbium-doped fibre
amplifier," Electron. Lett., vol. 27, pp. 1369-1370 (1991).
[125] M. Nakazawa, K. Suzuki, E. Yamada, and H. Kubota, "Observation
of nonlinear interactions in 20 Gbit/s soliton transmission over
500 km using erbium-doped fibre amplifiers," Electron. Lett.,
vol. 27, pp. 1662-1663 (1991).
[126] M. Nakazawa, E. Yoshida, and Y. Kimura,"Low threshold,
290 fs erbium-doped fiber laser with a nonlinear amplifying loop
mirror pumped by InGaAsP laser diodes," Appl. Phys. Lett.,
vol. 59, pp. 2073-2075 (1991).
[127] M. Nakazawa," Optical soliton transmission," IECE
of Japan (in Japanese) , Invited paper, vol. J74-C-I, pp. 429-439
(1991).
[128] M. Nakazawa, E. Yamada, H. Kubota, "Coexistence of a
self-induced-transparency soliton and a nonlinear Schrdinger
soliton in an erbium-doped fiber," Phys. Rev. A, vol. 44, pp.
5973-5987 (1991).
[129] K. Kurokawa and M. Nakazawa, "Femtosecond soliton transmission
in 18 km erbium-doped fibre amplifier with different pumping configurations,"
Electron. Lett., vol. 27, pp. 1765-1766 (1991).
[130] Y. Kimura, E. Yoshida, and M. Nakazawa,"High gain characteristics
of an erbium-doped fiber amplifier pumped in the 800 nm band,"
Jpn. J. Appl. Phys., vol. 30, pp. 1995-2001 (1991).
[131] Y. Kimura, K.Suzuki, and M. Nakazawa," Noise figure
characteristics of Er3+-doped fiber amplifier pumped in 0.8 mm band,"
Electron. Lett., vol. 27, No. 2, pp. 146-147, Jan., (1991) |
|
1990 |
 |
|
[90] M. Nakazawa, K. Suzuki, and Y. Kimura," 3.2-5 Gb/s, 100
km error-free soliton transmission with erbium amplifiers and repeaters,"
IEEE, Photon. Tech. Lett., vol. 2, pp. 216-219 (1990).
[91] H. Kubota and M. Nakazawa," Long distance optical soliton
transmission with lumped amplifiers," IEEE, J. Quantum Electron.,
vol. QE-26, pp. 692-700 (1990).
[92] Y. Kimura, K. Suzuki, and M. Nakazawa," Pump wavelength
dependence of the gain factor in 1.48 mm-pumped Er3+-doped fiber
amplifiers," Appl. Phys. Lett., vol. 56, pp. 1611-1613 (1990).
[93] K. Kurokawa, M. Nakazawa, and T. A. Caughey," Near Infrared
ultrashort pulse generation with LiNbO3 by difference frequency
generation," Opt. Commun. , vol. 75, pp. 413-418 (1990).
[94] M. Nakazawa, K. Suzuki, and Y. Kimura," Generation and
transmission of optical solitons in the GHz region using a directly
modulated distributed-feedback laser diode," Opt. Lett., vol.
15, pp. 588-590 (1990).
[95] M. Nakazawa, K. Suzuki, and Y. Kimura," Completely transform-limited
pulse generation in the GHz region from a gain-switched distributed-feedback
laser diode using spectral windowing," Opt. Lett. vol. 15,
pp. 715-717 (1990).
[96] K. Suzuki, M. Nakazawa, and Y. Kimura," 5 Gbit/s, 250
km error-free soliton transmission with Er3+-doped fiber amplifiers
and repeaters," Electron. Lett., vol. 26, pp. 551-553 (1990).
[97] M. Nakazawa, Y. Kimura, and K. Suzuki," High gain erbium
fibre amplifier pumped by 800 nm band," Electron. Lett., vol.
26, pp. 548-549 (1990).
[98] K. Suzuki, Y. Kimura, and M. Nakazawa," High gain Er3+-doped
fibre amplifier pumped by 820 nm GaAlAs laser diodes," Electron.
Lett., vol. 26, pp. 948-949 (1990).
[99] M. Nakazawa, K. Kurokawa, H. Kubota, K. Suzuki, and Y. Kimura,"
Femtosecond erbium-doped optical fiber amplifier," Appl. Phys.
Lett., vol. 57, pp. 653-655 (1990).
[100] K. Suzuki, and M. Nakazawa," Automatic optical soliton
control using cascaded Er3+-doped fibre amplifiers," Electron.
Lett., vol. 26, pp. 1032-1033 (1990).
[101] M. Nakazawa, Y. Kimura, and K. Suzuki," Gain-distribution
measurements along an ultralong erbium-doped fiber amplifier using
optical-time-domain reflectometry," Opt. Lett., vol. 15, pp.
1200-1202 (1990).
[102] H. Kubota and M. Nakazawa," Maximum transmission capacity
of a soliton communication system with lumped amplifiers,"
Electron. Lett., vol. 26, pp. 1454-1455 (1990).
[103] M. Nakazawa" Erbium-doped optical fiber amplifiers and
thier applications," Journal of Applied Physics (In Japanese,
Ouyou-Butsuri), vol. 59, no.9, pp. 1175-1192 (1990).
[104] M. Nakazawa, K. Suzuki, E. Yamada, and Y. Kimura," 20
Gbit/s soliton transmission over 200 km using erbium-doped fibre
repeaters," Electron. Lett., vol. 26, pp. 1592-1593 (1990).
[105] M. Nakazawa, K. Kurokawa, H. Kubota, and E. Yamada,"
Observation of the trapping of an optical soliton by adiabatic gain
narrowing and its escape," Phys. Rev. Lett., vol. 65, pp. 1881-1884
(1990).
[106] K. Suzuki, Y. Kimura, and M. Nakazawa,"High power Er3+-doped
fiber amplifier pumped by 1.48 mm laser diodes," Jpn. J. Appl.
Phys., vol. 29, pp. L2067-L2069 (1990).
[107] Y. Kimura, M. Nakazawa, and K. Suzuki," Ultra-efficient
erbium-doped fiber amplifier," Appl. Phys. Lett., vol. 57,
pp. 2635-2637 (1990).
[108] M. Nakazawa, Y. Kimura, E. Yoshida, and K. Suzuki,"
Efficient erbium-doped fibre amplifier pumped at 820 nm," Electron.
Lett., vol. 26, pp. 1936-1937 (1990).
[109] M. Nakazawa," Propagation and amplification of ultrashort
optical soliton pulses in erbium-doped fibers for very high speed
communication," Springer Series in Chemical Physics, vol. 53,
Ultrafast Phenomena VII, pp. 179-183 (1990).
[110] M. Nakazawa, K. Suzuki, E. Yamada," Femtosecond optical
pulse generation using a distributed-feedback laser diode,"
Electron. Lett., vol. 26, pp. 2038-2040 (1990).
[111] M. Nakazawa, K. Suzuki, H. Kubota, E. Yamada, and Y. Kimura,
"Dynamic Optical Soliton Communication," IEEE, J. Quantum
Electron., vol. QE-26, pp. 2095-2102 (1990).
[112] M. Nakazawa, Y. Kimura, and K. Suzuki," Ultralong Dispersion-shifted
Erbium-Doped Fiber Amplifier and Its Application to soliton transmission,"
IEEE, J. Quantum Electron., vol. QE-26, pp. 2103-2108 (1990).
[113] M. Nakazawa, Y. Kimura, and K. Suzuki, " High gain erbium
fiber amplifier pumped by 800nm band," Electron. Lett., vol.
26, No. 8, pp. 548-549, Apr., (1990) |
|
1989 |
 |
|
[71] M. Nakazawa, Y. Kimura, and K. Suzuki,"Efficient Er3+-doped
optical fiber amplifier pumped by a 1.48 mm InGaAsP laser diode,"
Appl. Phys. Lett., vol. 54, pp. 295-297 (1989).
[72] K. Suzuki, M. Nakazawa, and H. A. Haus," Parametric soliton
laser," Opt. Lett., vol. 14, pp. 320-322 (1989).
[73] M. Nakazawa, Y. Kimura, and K. Suzuki, " Soliton amplification
and transmission with Er3+-doped fibre repeater pumped by GaInAsP
laser diode," Electron. Lett., vol.25, pp. 199-200 (1989).
[74] K. Suzuki, M. Nakazawa, and H. A. Haus," The parametric
soliton laser with low pedestal," Jpn. J. Appl. Phys. vol.
28, pp. L256-258 (1989).
[75] M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus," High-order
solitons and the modulational instability," Phys. Rev. A, vol.
39, pp. 5768-5776 (1989).
[76] H. Kubota and M. Nakazawa," Study of optical pulse compression
with higher-order nonlinearity and dispersion," Jpn. J. Appl.
Phys., vol. 28, pp. 609-614 (1989).
[77] K. Kurokawa and M. Nakazawa," Femtosecond 1.4-1.6 mm
infrared pulse generation at a high repetition rate by difference
frequency generation," Appl. Phys. Lett., vol. 55, pp. 7-9
(1989).
[78] K. Suzuki, Y. Kimura and M. Nakazawa," An 8 mW cw Er3+-doped
fiber laser pumped by 1.46 mm InGaAsP laser diodes," Jpn. J.
Appl. Phys., vol. 28, pp. L1000-1002 (1989).
[79] M. Nakazawa, K. Suzuki, and H. A. Haus," The modulational
instability laser-Part I:Experiment," IEEE ,J. Quantum Electron.,
vol. QE-25, pp. 2036-2044 (1989).
[80] M. Nakazawa, K. Suzuki, and H. Kubota, and H. A. Haus,"
The modulational instability laser-Part II: Theory," IEEE,
J. Quantum Electron., vol. QE-25, pp. 2045-2052 (1989).
[81] K. Hagimoto, M. Nakazawa, et. al., " 250 km nonrepeated
transmission experiment at 1.8 Gb/s using LD pumped Er3+-doped fibre
amplifiers in IM/DD system," Electron. Lett., vol. 25, pp.
662-664 (1989).
[82] K. Suzuki, Y. Kimura and M. Nakazawa," Subpicosecond
soliton amplification and transmission using Er3+-doped fibers pumped
by InGaAsP laser diodes," Opt. Lett., vol. 14, 865-867 (1989).
[83] M. Nakazawa, Y. Kimura, K. Suzuki, and H. Kubota," Wavelength
multiple soliton amplification and transmission with an Er3+-doped
optical fiber," J. Appl. Phys. vol. 66, pp. 2803-2812 (1989).
[84] M. Nakazawa, K. Suzuki, and Y. Kimura,"20-GHz soliton
amplification and transmission with an Er3+-doped fiber," Opt.
Lett., vol. 14, pp. 1065-1067 (1989).
[85] M. Nakazawa, Y. Kimura, K. Suzuki, H. Kubota," Erbium-doped
fiber amplifier and its application to nonlinear optics," Proceedings
of SPIE-The International Society for Optical Engineering, vol.
1171, pp. 328-345 (1989).
[86] K. Kurokawa, H. Kubota, and M. Nakazawa," Generation
of 72-fs pulse from a cavity dumped, synchronously pumped dye laser
with a single jet," Opt. Commun., vol. 73, pp. 319-32l (1989).
[87] K. Suzuki, Y. Kimura, and M. Nakazawa," Pumping wavelength
dependence of gain factor of a 0.98 mm pumped Er3+ fiber amplifier,"
Appl. Phys. Lett., vol. 55, pp. 2573-2575 (1989).
[88] Y. Kimura, K. Suzuki, and M. Nakazawa," 46.5 dB gain
in Er3+-doped fibre amplifier pumped by 1.48 mm GaInAsP laser diodes,"
Electron. Lett., vol. 25, pp. 1656-1657 (1989).
[89] Y. Kimura, K. Suzuki, and M. Nakazawa," Laser-diode-pumped
mirror-free Er3+-doped fiber laser," Opt. Lett., Vol. 14, No.
18, pp. 999-1001, Sep., (1989) |
|
1988 |
 |
|
[61] M. Nakazawa, T. Nakashima, H. Kubota, and S. Seikai,"
Efficient optical pulse compression using a pair of Brewster-angled
TeO2 crystal prisms," J. Opt. Soc. Amer., vol. B-5, pp. 215-221
(1988).
[62] M. Nakazawa, T. Nakashima, and H. Kubota," Optical pulse
compression using a TeO22 acousto-optical light deflector,"
Opt. Lett., vol. 13, pp. 120-122 (1988).
[63] H. Kubota and M. Nakazawa," Compensation of nonlinear
chirp generated by self-steepening using third order dispersion
of a grating pair," Opt. Commun., vol. 66, pp. 79-82 (1988).
[64] Y. Kimura and M. Nakazawa," Lasing characteristics of
Er3+-doped silica fibers from 1553 to 1603 nm," J. Appl. Phys.,
vol. 64, pp. 516-520 (1988).
[65] T. Horiguchi M. Nakazawa, and M. Tokuda," Multimode-fiber-type
optical directional coupler for OTDR by using acoustooptical deflector,"
IECE of Japan (in Japanese), vol. J7l-B, pp. 547-554 (1988).
[66] K. Suzuki and M. Nakazawa," Raman amplification in a
P2O5-doped optical fiber," Opt. Lett., vol. 13, pp. 666-668
(1988).
[67] H. Kubota, K. Kurokawa, and M. Nakazawa," 29-fsec pulse
generation from a linear-cavity synchronously pumped dye laser,"
Opt. Lett., vol. 13, pp. 749-75l (1988).
[68] M. Nakazawa, K. Suzuki, and H. A. Haus," Modulational
instability oscillation in nonlinear dispersive ring cavity,"
Phys. Rev. A, vol. 38, pp. 5193-5196 (1988).
[69] K. Kurokawa, H. Kubota, and M. Nakazawa,"48 fs, 190 kW
pulse generation from a cavity dumped, synchronously pumped dye
laser," Opt. Commun., vol. 68, pp. 287-290 (1988).
[70] Y. Kimura and M. Nakazawa," Multiwavelength cw laser
oscillation in a Nd3+ and Er3+ doubly doped fiber laser," Appl.
Phys. Lett., vol. 53, pp. 125l-1253 (1988). |
|
1987 |
 |
|
[51] H. A. Haus and M. Nakazawa," Theory of the fiber Raman
soliton laser," J. Opt. Soc. Amer., vol. B-4, pp. 652-660 (1987).
[52] T. Nakashima, M. Nakazawa, K. Nishi, and H. Kubota,"
Effect of stimulated Raman scattering on pulse-compression characteristics,"
Opt. Lett., vol. 12, pp. 404-406 (1987).
[53] Y. Kimura and M. Nakazawa," Lasing spectrum of P co-doped
Nd3+ silica fibers," Jpn. J. Appl. Phys., vol. 26, pp. L1253-1254
(1987).
[54] M. Nakazawa, T. Nakashima, H. Kubota, and S. Seikai, "
65-femtosecond pulse generation from a synchronously pumped dye
laser without a colliding-pulse mode-locking technique," Opt.
Lett., vol. 12, pp. 68l-683 (1987).
[55] M. Nakazawa, M. S. Stix, E. P. Ippen, and H. A. Haus,"
Theory of the synchronously pumped fiber Raman laser with self-phase
modulation," J. Opt. Soc. Amer., vol. B-4, pp. 1412-142l (1987).
[56] M. Nakazawa, T. Nakashima, H. Kubota, and S. Seikai,"
55 kW, 240 fs pulse generation from a cavity dumped, synchronously
pumped dye laser and its application to pulse compression,"
Appl. Phys. Lett., vol. 5l, pp. 728-730 (1987).
[57] Y. Kimura, M. Nakazawa, and S. Seikai, " Fiber-optic
nonlinear coherent coupler," IEEE, J. Quantum Electron., vol.
QE-23, pp. 1261-1267 (1987).
[58] M. Nakazawa," Nonlinear optics in optical fibers,"
Journal of Applied Physics (In Japanese, Ouyou-Butsuri), vol. 56,
no. 10, pp. 1265-1288 (1987).
[59] M. Nakazawa and Y. Kimura," Simultaneous oscillation
at 0.91, 1.08, 1.53 mm in a fusion-spliced fiber laser," Appl.
Phys. Lett., vol. 5l, pp. 1768-1770 (1987).
[60] Y. Kimura and M. Nakazawa," Nonlinear polarization changes
in a birefringent fiber," Jpn. J. Appl. Phys., vol. 26, pp.
1503-1508 (1987). |
|
1986 |
 |
|
[46] M. Nakazawa," Phase-sensitive detection on Lorentzian
line shape and its application to frequency stabilization of lasers,"
J. Appl. Phys., vol. 59, pp. 2297-2305 (1986).
[47] T. Nakashima, S. Seikai, and M. Nakazawa," Configuration
of the optical transmission line using stimulated Raman scattering
for signal light amplification," J. Lightwave Tech., vol. LT-4,
pp.569-573 (1986).
[48] N. Uesugi, T. Horiguchi, M. Nakazawa, and Y. Murakami,"
Optical fiber cable measurements in the field," IEEE, J. Selected
Areas in Communications, vol. SAC-4, pp.732-736 (1986).
[49] T. Nakashima, S. Seikai, M. Nakazawa, and Y. Negishi,"
Theoretical limit of repeater spacing in an optical transmission
line utilizing Raman amplification," IEEE, J. Lightwave Tech.,
vol. LT-4, pp. 1267-1272 (1986).
[50] M. Nakazawa, M. Kuznetsov, and E. P. Ippen, "Theory of
the synchronously pumped fiber Raman laser," IEEE, J. Quantum
Electron., vol. QE-22, pp. 1953-1966 (1986). |
|
1985 |
 |
|
[35] M. Nakazawa, T. Nakashima, S. Seikai, and M. Ikeda,"
Self-detecting optical-time-domain reflectometer for single-mode
fibers," Opt. Lett., vol. 10, pp. 157-159 (1985).
[36] T. Nakashima, M. Nakazawa, and S. Seikai,"Optical time
domain reflectometer with a laser diode operating as light emitter/photodetector,"
Jpn. J. Appl. Phys., vol. 24, pp. L135-L136 (1985).
[37] M. Nakazawa," Synchronously pumped fiber Raman gyroscope,"
Opt. Lett., vol. 10, pp. 193-195 (1985).
[38] M. Nakazawa," Highly efficient Raman amplification in
a polarization-preserving optical fiber," Appl. Phys. Lett.,
vol. 46, pp. 628-630 (1985).
[39] M. Nakazawa, T. Nakashima, and S. Seikai, " Raman amplification
in 1.4-1.5 mm spectral region in polarization-preserving optical
fibers," J. Opt. Soc. Amer., vol. B-2, pp. 515-52l (1985).
[40] T. Nakashima, M. Nakazawa, and Y. Negishi," Sum-frequency
generation in a polarization-preserving optical fiber," Jpn.
J. Appl. Phys., vol. 24, pp. L308-310 (1985).
[41] N. Shibata, K. Okamoto, M. Nakazawa, S. Seikai, and M. Tokuda,
"Polarization mode properties of an elliptical stress-cladding
fiber," Trans. IECE of Japan, vol. E-68, pp. 277-283 (1985).
[42] M. Nakazawa, N. Shibata, T. Horiguchi, and S. Seikai, "Polarization-mode-coupling
measurements along a spliced polarization- preserving fiber using
a backscattering technique," J. Opt. Soc. Amer., vol. A-2,
pp. 1066-1076 (1985).
[43] T. Horiguchi, K. Suzuki, N. Shibata, M. Nakazawa, and S. Seikai,"
A novel technique for reducing polarization noise in optical-time-domain
reflectometers for single-mode fibers," J. Lightwave Tech.,
vol. LT-3, pp. 90l-908 (1985).
[44] T. Nakashima, S. Seikai, and M. Nakazawa," Dependence
of Raman gain on relative index difference for GeO2-doped single-mode
fibers," Opt. Lett., vol. 10, pp. 420-422 (1985).
[45] M. Nakazawa," Measurement of polarization mode-coupling
along a polarization-preserving optical fiber using a backscattering
technique,"Jpn Soc. of Opt. (in Japanese), vol. 14, pp. 350-358
(1985). |
|
1984 |
 |
|
[26] M. Nakazawa, M. Tokuda, Y. Negishi, and N. Uchida," Active
transmission line: Light amplification by backward stimulated Raman
scattering in polarization-maintaining optical fiber," J. Opt.
Soc. Amer., vol. B-l, pp. 80-85 (1984).
[27] M. Nakazawa, M. Tokuda, and N. Uchida," Continuous-wave
Raman oscillation for a Nd3+:YAG intracavity fiber laser,"
J. Opt. Soc. Amer., vol. B-l, pp. 86-90 (1984).
[28] M. Nakazawa, N. Shibata, M. Tokuda, and Y. Negishi,"
Measurements of polarization mode couplings along polarization-maintaining
single-mode optical fibers," J. Opt. Soc. Amer., vol. A-l,
pp. 285-292 (1984).
[29] T. Horiguchi, M. Nakazawa, M. Tokuda, and N. Uchida,"
An acoustooptical directional coupler for an optical time domain
reflectometer," J. Lightwave Tech., vol. LT-2, pp. 108-115
(1984).
[30] M. Nakazawa, M. Tokuda, Y. Morishige, and H. Toratani,"
1.55 mm OTDR for single-mode optical fibre longer than 110 km,"
Electron. Lett., vol. 20, pp. 323-325 (1984).
[31] Y. Morishige, S. Kishida, K. Washio, H. Toratani, and M. Nakazawa,"
Output-stabilized high-repetition-rate 1.545-mm Q-switched Er:glass
laser," Opt. Lett., vol. 9. pp. 147-149 (1984).
[32] M. Nakazawa, M. Tokuda, K. Washio, and Y. Asahara," 130-km
long fault location for single-mode optical fiber using 1.55 mm
Q-switched Er3+:glass laser," Opt. Lett., vol.9, pp. 312-314
(1984).
[33] M. Nakazawa, T. Nakashima, and M. Tokuda," An optoelectronic
self-oscillatory circuit with an optical fiber delayed feedback
and its injection locking technique," J. Lightwave Tech., vol.
LT-2, pp. 719-730 (1984).
[34] M. Nakazawa, T. Nakashima, and S. Seikai, " Efficient
multiple visible light generation in a polarization-preserving optical
fiber pumped by a 1.064 mm YAG laser," Appl. Phys. Lett., vol.
45, pp. 823-825 (1984). |
|
1983 |
 |
|
[18]@M. Nakazawa, M. Tokuda, and N. Uchida," Analyses
of optical time-domain reflectometry for single-mode fibers and
of polarization optical time-domain reflectometry for polarization-maintaining
fibers," Opt. Lett., vol. 8, pp. 130-132 (1983).
[19] M. Nakazawa," Theory of backward Rayleigh scattering
in polarization-maintaining single-mode fibers and its application
to polarization optical time domain reflectometry," IEEE, J.
Quantum Electron., QE-19, pp. 854-86l (1983).
[20] M. Nakazawa, M. Tokuda, and N. Uchida," Lasing characteristics
of a Nd3+:YAG laser with a long optical-fiber resonator," J.
Opt. Soc. Amer., vol. 73, pp. 838-842 (1983).
[21] M. Nakazawa, and K. Aoyama," Measurement technique for
single-mode optical fiber," Rev. ECL., vol. 3l, pp. 290-298
(1983).
[22] M. Nakazawa and M. Tokuda,"Measurement of the fiber loss
spectrum using fiber Raman optical time domain reflectometry,"
Appl. Opt. , vol. 22, pp. 1910-1914 (1983).
[23] M. Nakazawa," Rayleigh backscattering theory for single-mode
optical fibers," J. Opt. Soc. Amer., vol. 73, pp. 1175-1180
(1983).
[24] M. Nakazawa and M. Tokuda," Continuum spectrum generation
in a multimode fiber using two pump beams at 1.3 mm wavelength region,"
Jpn. J. Appl. Phys., vol. 22, pp. L239-L241 (1983).
[25] M. Nakazawa, M. Tokuda, and Y. Negishi," Measurement
of polarization mode coupling along a polarization-maintaining optical
fiber using a backscattering technique," Opt. Lett., vol. 8,
pp. 546-548 (1983). |
|
1982 |
 |
|
[14] T. Musha, J. Kamimura, and M. Nakazawa," Optical phase
fluctuation thermally induced in a single-mode optical fiber,"
Appl. Opt., vol. 2l, pp. 694-698 (1982).
[15]M. Nakazawa, M. Tokuda, and K. Washio,@"Optical
time domain reflectometry at a wavelength of 1.5 mm using stimulated
Raman scattering in multimode, graded-index optical fiber,"
J. Appl. Phys., vol. 53, pp. 139l-1393 (1982).
[16] M. Nakazawa," Frequency characteristics of self-sustained
intensity oscillation of a laser diode using a delayed electrical
feedback," IEEE, J. Quantum Electron., vol. QE-18, pp. 1050-1052,
(1982).
[17]@M. Nakazawa, M. Tokuda, and N. Uchida,@"Continuous-wave
laser oscillation with an ultralong optical-fiber resonator,"
J. Opt. Soc. Amer., vol. 72, pp. 1338-1344 (1982). |
|
1981 |
 |
|
[8] M. Nakazawa, T. Tanifuji, M. Tokuda, and N. Uchida,"
Photon probe fault locator for single-mode optical fiber using an
acousto-optical light deflector," IEEE, J. Quantum Electron.,
vol. QE-17, pp. 1264-1269 (1981).
[9] M. Nakazawa, T. Horiguchi, M. Tokuda, and N. Uchida,"Polarization
beat length measurement in a single-mode optical fibre by backward
Rayleigh scattering," Electron. Lett., vol. 17, pp. 513-515
(1981).
[10] M. Nakazawa, M. Tokuda, and N. Uchida,"Self-sustained
intensity oscillation of a laser diode introduced by a delayed electrical
feedback using an optical fiber and an electrical amplifier,"
Appl. Phys. Lett., vol. 39, pp. 379-381 (1981).
[11] M. Nakazawa, J. Nakamura, and T. Musha,"Preliminary experiment
for optical heterodyne communication with a single-mode optical
fiber by using frequency -stabilized He-Ne lasers," Opt. Lett.,
vol. 6, pp. 508-510 (1981).
[12] M. Nakazawa, M. Tokuda, K. Washio, and Y. Morishige,"Marked
extension of diagnosis length in optical time domain reflectometry
using 1.32 mm YAG laser," Electron. Lett., vol. 17, pp. 783-
785 (1981).
[13] M. Nakazawa, T. Horiguchi, M. Tokuda, and N. Uchida,"
Measurement and analysis on polarization properties of backward
Rayleigh scattering for single-mode optical fibers,"@IEEE
J. Quantum Electron., vol. QE-17, pp. 2326-2334 (1981). |
|
1980 |
 |
|
[5] M. Nakazawa and T. Musha, "Stability measurement of
the 0.633 mm line in a CH4-locked 3.39 mm He-Ne laser," Jpn.
J. Appl. Phys. vol. 19, pp. L315-317 (1980).
[6] M. Nakazawa and T. Musha,"Stability of FM-eliminated 3.39
mm He-Ne/CH44laser" Jpn. J. Appl. Phys., vol. 19, pp. L327-330,
(1980).
[7] M. Nakazawa, J. Nakamura, and T. Musha," FM eliminated
CH4, locked frequency stabilization of 3.39 mm He-Ne laser in dual
feedback control," IEEE, J. Quantum Electron., vol. QE-16,
pp. 854-859 (1980). |
|
1979 |
 |
|
[1] M. Nakazawa, T. Tako, and T. Musha,"Frequency stabilization
of a 3.39 mm He-Ne laser with no frequency modulation," IECE
of Japan (in Japanese), vol.62-C, pp.9-16 (1979).
[2] M. Nakazawa, T. Tako, and T. Musha,"Observation of saturated
absorption of the 3.39 mm line in an external CH44cell," Jpn.
J. Appl. Phys., vol. 18, pp. 597-602 (1979).
[3] M. Nakazawa, T. Musha, and T. Tako, "Frequency-stabilized
3.39 mm He-Ne laser with no frequency modulation," J. Appl.
Phys., vol. 50, pp. 2544-2547 (1979).
[4] M. Nakazawa, J. Nakamura, and T. Musha,"Frequency stabilization
of 0.633 mm line with the aid of 3.39-mm line locked to CH4,"
Appl. Phys. Lett., vol. 35, pp. 745-747 (1979). |
TOP
@
|