
2023 


[521] M. Nakazawa and T. Hirooka, gTheory of HigherOrder HermiteGaussian Pulse Generation From an FM ModeLocked Laser,h IEEE J. Quantum Electron., vol. 59, no. 2, 1600325, Apr. (2023).


2022 


[511] M. Yoshida, K. Sato, T. Hirooka, K. Kasai, and M. Nakazawa, gPrecise Measurements and their Analysis of GAWBSInduced Depolarization Noise in MultiCore Fiber for Digital Coherent Transmission,h IEICE Trans. Comm., vol. E105B, no. 2, pp. 151158, February (2022).
[512] M. Nakazawa and T. Hirooka, gTheory of FM ModeLocking of a Laser as an Arbitrary Optical Function Generator,h IEEE J. Quantum Electron., vol. 58, no. 2, 1300125, April (2022).
[513] K. Kasai, T. Kan, M. Yoshida, T. Hirooka, and M. Nakazawa, gBroadband injectionlocked homodyne receiver for digital coherent transmission using a low Q FabryPerot LD,h Opt. Express, vol. 30, no. 8, pp. 1334513355, April (2022).
[514] M. Nakazawa, M. Yoshida, and T. Hirooka, gExperiments on an AM ModeLocked Laser as an Arbitrary Optical Function Generator,h IEEE J. Quantum Electron., vol. 58, no. 3, 1300218, June (2022).
[515] M. Nakazawa, M. Yoshida, and T. Hirooka, gExperiments on an FM ModeLocked Laser as an Arbitrary Optical Function Generator,h IEEE J. Quantum Electron., vol. 58, no. 3, 1300316, June (2022).
[516] M. Naghshvarianjahromi, S. Kumar, M. J. Deen, T. Iwaya, K. Kimura, M. Yoshida, T. Hirooka, and M. Nakazawa, gSoftwareDefined Fiber Optic Communications for UltrahighSpeed Optical Pulse Transmission Systems,h IEEE J. Sel. Topics Quantum Electron., vol. 28, no. 4, 7500210, JulyAug. 2022.
[517] K. Kimura, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, gExperimental and Numerical Analysis of UltrahighSpeed Coherent Nyquist Pulse Transmission with LowNonlinearity Dispersion Compensator,h IEICE Trans. Comm., vol. E105B, no. 9, pp. 10141022, Sep. (2022).
[518] M. Nakazawa and T. Hirooka, gTheory of Generation of Various Dark and Negative Pulses From an FM ModeLocked Laser,h IEEE J. Quantum Electron., vol. 58, no. 5, 1300524, Oct. (2022).
[519] M. Nakazawa, K. Kasai, M. Yoshida, and T. Hirooka, gOptical andWireless Linked Fully Coherent Access System toward Next Generation RAN,h IEICE Trans. Electron. (in Japanese), invited paper, vol. J105C, no. 11, pp. 315328, Nov. (2022).
[520] M. Nakazawa, M. Yoshida, and T. Hirooka, gExperiments on Generation of Various Dark and Bright Pulses From an FM ModeLocked Laser,h IEEE J. Quantum Electron., vol. 58, no. 6, 1600523, December (2022).


2021 


[501] T. Kan, K. Sato, M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, gSpectrally efficient pilot tonebased compensation of interchannel crossphase modulation noise in a WDM coherent transmission using injection locking,h Opt. Express, vol. 29, no. 2, pp. 14541469, January (2021).
[502] M. Yoshida, T. Kan, K. Kasai, T. Hirooka, and M. Nakazawa, g10 Tbit/s QAM quantum noise stream cipher coherent transmission over 160 km,h J. Lightwave Technol., vol. 39, no. 4, pp. 10561063, February (2021).
[503] M. Yoshida, T. Kan, K. Kasai, T. Hirooka, K. Iwatsuki, and M. Nakazawa, g10 channel WDM 80 Gbit/s/ch, 256 QAM bidirectional coherent transmission for a high capacity nextgeneration mobile fronthaul,h J. Lightwave Technol., vol. 39, no. 5, pp. 12891295, March (2021).
[504] M. Yoshida, T. Hirooka, and M. Nakazawa, gUltrahighspeed Nyquist pulse transmission beyond 10 Tbit/s,h IEEE J. Selected Topics in Quantum Electronics (invited paper), vol. 27, no. 2, 7700612, March/April (2021).
[505] K. Sato, T. Kan, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, gChromatic dispersion dependence of GAWBS phase noise compensation with pilot tone,h Opt. Express, vol. 29, no. 7, pp. 1067610687, March (2021).
[506] M. Nakazawa, M. Yoshida, and T. Hirooka, gRecent progress and challenges toward ultrahighspeed transmission beyond 10 Tbit/s with optical Nyquist pulses,h IEICE Electron. Express (invited paper), vol. 18, no. 7, 20212001, April (2021).
[507] M. Nakazawa and T. Hirooka, gA Generalized Modelocking Theory for a Nyquist Laser with an Arbitrary Rolloff Factor PART I: Master Equations and Optical Filters in a Nyquist Laser,h IEEE J. Quantum Electron., vol. 57, no. 3, 1100117, June (2021).
[508] M. Nakazawa and T. Hirooka, gA Generalized Modelocking Theory for a Nyquist Laser with an Arbitrary Rolloff Factor PART II: Oscillation Waveforms and Spectral Characteristics,h IEEE J. Quantum Electron., vol. 57, no. 3, 1100215, June (2021).
[509] M. Nakazawa and T. Hirooka, gTheory of AM ModeLocking of a Laser as an Arbitrary Optical Function Generator,h IEEE J. Quantum Electron., vol. 57, no. 6, 1300320, December (2021).
[510] K. Sato, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, gGAWBS noise correlation between cores in multicore fibers,h Opt. Express, vol. 29, no. 26, pp. 4252342537, December (2021).


2020 


[497] N. Takefushi, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, gTheoretical and experimental analyses of GAWBS phase noise in various optical fibers for digital coherent transmission,h Opt. Express vol. 28, no. 3, pp. 28732883, February (2020).
[498] N. Takefushi, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, gGAWBS phase noise characteristics in multicore fibers for digital coherent transmission,h Opt. Express vol. 28, no. 15, pp. 2301223022, July (2020).
[499] M. Yoshida, N. Takefushi, K. Kasai, T. Hirooka, and M. Nakazawa, gPrecise measurements and their analysis of GAWBSinduced depolarization noise in various optical fibers for digital coherent transmission,h Opt. Express vol. 28, no. 23, pp. 3442234433, November (2020).
[500] T. Kan, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, gInjectionlocked 256 QAM WDM coherent transmissions in C and Lbands,h Opt. Express vol. 28, no. 23, pp. 3466534676, November (2020).


2019 


[494] M. Yoshida, K. Kimura, T. Iwaya, K. Kasai, T. Hirooka, and M. Nakazawa, gSinglechannel 15.3 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 8.3 bit/s/Hz,h Opt. Express vol. 27, no. 20, pp. 2895228967, September (2019).
[495] M. Yoshida, N. Takefushi, K. Kasai, T. Hirooka, and M. Nakazawa, "Suppression of large error floor in 1024 QAM digital coherent transmission by compensating for GAWBS phase noise," Opt. Express vol. 27, no. 25, pp. 3669136698, December (2019).
[496] R. Hirata, T. Hirooka, M. Yoshida, and M. Nakazawa, gWavelengthtunable subpicosecond optical switch over entire Cband using nonlinear optical loop mirror,h IEICE Electron. Express vol. 16, no. 23, 20190664, December (2019).


2018 


[487] S. Okamoto, M. Terayama, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, gExperimental and numerical comparison of probabilistically shaped 4096 QAM and a uniformly shaped 1024 QAM in allRaman amplified 160 km transmission,h Opt. Express vol. 26, no. 3, pp. 35353543, February (2018).
[488] K. Kasai, M. Nakazawa, M. Ishikawa, and H. Ishii, g
8 kHz linewidth, 50 mW output, full Cband wavelength tunable DFB LD array with selfoptical feedback,h Opt. Express vol. 26, no. 5, pp. 56755685, March (2018).
[489] D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, M. Yoshida, K. Kasai, M. Nakazawa, H. Takahashi, K. Igarashi, I. Morita, and M. Suzuki,, g10.16petab/s dense SDM/WDM transmission over 6mode 19core fiber across the C+L band,h J. Lightwave Technol. vol. 36, no. 6, pp. 13621368, March (2018).
[490] M. Nakazawa, M. Yoshida, M. Terayama, S. Okamoto, K. Kasai, and T. Hirooka, "Observation of guided acousticwave Brillouin scattering noise and its compensation in digital coherent optical fiber transmission," Opt. Express vol. 26, no. 7, pp. 91659181, April (2018).
[491] Y. Wang, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa, "Singlechannel 200 Gbit/s, 10 Gsymbol/s1024 QAM injectionlocked coherent transmission over 160 km with a pilotassisted adaptive equalizer," Opt. Express vol. 26, no. 13, pp. 1701517024, June (2018).
[492] K. Kimura, J. Nitta, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, "Singlechannel 7.68 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 9.7 bit/s/Hz," Opt. Express vol. 26, no. 13, pp. 1741817428, June (2018).
[493] T. Hirooka, R. Hirata, J. Wang, M. Yoshida, and M. Nakazawa, gSinglechannel 10.2 Tbit/s (2.56 Tbaud) optical Nyquist pulse transmission over 300 km,h Opt. Express, vol. 26, no. 21, pp. 2722127236, October (2018).


2017 


[479] J. Nitta, M. Yoshida, K. Kimura, K. Kasai, T. Hirooka, and M. Nakazawa, gSingleChannel 3.84 Tbit/s, 64 QAM Coherent Nyquist Pulse Transmission over 150 km with a Spectral Efficiency of 10.6 Bit/s/Hz,h Opt. Express, vol. 25, no. 13, pp. 1519915207, June (2017).
[480] M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, R. Namiki, gQAM Quantum Noise Stream Cipher Transmission over 100 km with Continuous Variable Quantum Key Distribution," IEEE J. Quantum Electron., vol. 53, no. 4, 8000316, August (2017).
[481] M. Yoshida, T. Hirooka, and M. Nakazawa, gLowloss and reflectionfree fused type fanout device for 7core fiber based on a bundled structure,h Opt. Express, vol. 25, no. 16, pp. 1881718826, August (2017).
[482] S. Kumar and M. Nakazawa, gDiscrete solitons in optical fiber systems with large predispersion,h Opt. Express, vol. 25, no. 17, pp. 1992319945, August (2017).
[483] K. Kasai, M. Nakazawa, Y. Tomomatsu, and T. Endo, g1.5 ƒÊm, modehopfree full Cband wavelength tunable laser diode with a linewidth of 8 kHz and a RIN of 130 dB/Hz and its extension to the Lband,h Opt. Express, vol. 25, no. 18, pp. 2211322124, September (2017).
[484] T. Kan, K. Kasai, M. Yoshida, and M. Nakazawa, g42.3 Tbit/s, 18 Gbaud 64 QAM WDM coherent transmission over 160 km in the Cband using an injectionlocked homodyne receiver with a spectral efficiency of 9 bit/s/Hz,h Opt. Express vol. 25, no. 19, pp. 2272622737, September (2017).
[485] K. Harako, M. Yoshida, T. Hirooka, and M. Nakazawa, "A 40 GHz, 770 fs regeneratively modelocked erbium fiber laser operating at 1.6 ƒÊm," IEICE Electron. Express, vol. 14, no. 18, 20170829, October (2017).
[486] H. Ishii, N. Fujiwara, K. Watanabe, S. Kanazawa, M. Itoh, H. Takenouchi, Y. Miyamoto, K. Kasai, and M. Nakazawa, gNarrow Linewidth Tunable DFB Laser Array Integrated with Optical Feedback Planar Lightwave Circuit (PLC),h IEEE Sel. Top. Quantum Electron. vol. 23, no. 6, 1501007, November/December (2017).


2016 


[467] M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, gSinglechannel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km,h Opt. Express, vol. 24, no. 1, pp. 652661, January (2016).
[468] D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, gSinglechannel 1.92 Tbit/s, 64 QAM coherent Nyquist orthogonal TDM transmission with a spectral efficiency of 10.6 bit/s/Hz,h J. Lightwave Technol. vol. 34, no. 2, pp. 768775, January (2016).
[469] K. Kasai, M. Yoshida, and M. Nakazawa, g295 mW output, frequencystabilized erbium silica fiber laser with a linewidth of 5 kHz and a RIN of 120 dB/Hz,h Opt. Express vol. 24, no. 3, pp. 27372748, February (2016).
[470] K. Kasai and M. Nakazawa, gUltramultilevel digital coherent optical transmission employing a narrow linewidth laser, an optical phaselocked loop circuit and injectionlocking scheme,h The Review of Laser Engineering (in Japanese), vol. 44, no. 2, pp. 106110, February (2016).
[471] M. Nakazawa and T. Hirooka, "A mode locking theory of the Nyquist laser," Opt. Express vol. 24, no. 5, pp. 49814995, March (2016).
[472] M. Nakao, M. Yoshida, T. Hirooka, and M. Nakazawa, gA 1.55 μm, 271 fs and 1.07 μm, 294 fs simultaneously modelocked Er and Ybdoped fiber laser with a single SWNT/PVA saturable absorber,h IEICE Electron. Express, vol. 13, no. 14, 20160515, July (2016).
[473] M. Nakazawa and T. Hirooka, gA NonPerturbative ModeLocking Theory of the Nyquist Laser With a Dirichlet Kernel Solution,h IEEE J. Quantum Electron. vol. 52, no. 8, 1300113, August (2016).
[474] K. Harako, D. Suzuki, T. Hirooka, and M. Nakazawa, gRolloff factor dependence of Nyquist pulse transmission,h Opt. Express, vol. 24, no. 19, pp. 2198621994, September (2016).
[475] Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, g320 Gbit/s, 20 Gsymbol/s 256 QAM coherent transmission over 160 km by using injectionlocked local oscillator,h Opt. Express, vol. 24, no. 19, pp. 2208822096, September (2016).
[476] T. Hirooka, K. Tokuhira, M. Yoshida, and M. Nakazawa, g440 fs, 9.2 GHz regeneratively modelocked erbium fiber laser with a combination of higherorder solitons and a SESAM saturable absorber,h Opt. Express, vol. 24, no. 21, pp. 2425524264, October (2016).
[477] M. Yoshida, K. Yoshida, K. Kasai, and M. Nakazawa, g1.55 ƒÊm hydrogen cyanide optical frequencystabilized and 10 GHz repetitionratestabilized modelocked fiber laser,h Opt. Express, vol. 24, no. 21, pp. 2428724296, October (2016).
[478] D. Suzuki, K. Harako, T. Hirooka, and M. Nakazawa, gSinglechannel 5.12 Tbit/s (1.28 Tbaud) DQPSK transmission over 300 km using noncoherent Nyquist pulses,h Opt. Express, vol. 24, no. 26, pp. 2968229690, December (2016).


2015 


[457] A. Fujisaki, S. Matsushita, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, "An 11.6 W output, 6 kHz linewidth, singlepolarization EDFAMOPA system with a ^{13}C_{2}H_{2} frequency stabilized fiber laser," Opt. Express, vol. 23, no. 2, pp. 10811087, January (2015).
[458] S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, "2048 QAM (66Gbit/s) singlecarrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz," Opt. Express, vol. 23, no. 4, pp.49604969, February (2015).
[459] M. Yoshida, S. Beppu, K. Kasai, T. Hirooka, and M. Nakazawa, g1024 QAM, 7core (60 Gbit/s x 7) fiber transmission over 55 km with an aggregate potential spectral efficiency of 109 bit/s/Hz,h Opt. Express, vol. 23, no. 16, pp. 2076020766, August (2015).
[460] T. Hirooka, D. Seya, K. Harako, D. Suzuki, and M. Nakazawa, gUltrafast Nyquist OTDM demultiplexing using optical Nyquist pulse sampling in an alloptical nonlinear switch,h Opt. Express, vol. 23, no. 16, pp. 2085820866, August (2015).
[461] K. Kasai, Y. Wang, D. O. Otuya, M. Yoshida, and M. Nakazawa, g448 Gbit/s, 32 Gbaud 128 QAM coherent transmission over 150 km with a potential spectral efficiency of 10.7 bit/s/Hz,h Opt. Express vol. 23, no. 22, pp. 2842328429, November (2015).
[462] K. Kasai, Y. Wang, S. Beppu, M. Yoshida, and M. Nakazawa, g80 Gbit/s, 256 QAM coherent transmission over 150 km with an injectionlocked homodyne receiver,h Opt. Express, vol. 23, no. 22, pp. 2917429183, November (2015).
[463] K. Harako, D. Suzuki, T. Hirooka, and M. Nakazawa, g2.56 Tbit/s/ch (640 Gbaud) polarizationmultiplexed DQPSK noncoherent Nyquist pulse transmission over 525 km,h Opt. Express, vol. 23, no. 24, pp. 3080130806, November (2015).
[464] T. Hirooka, K. Kasai, Y. Wang, M. Nakazawa, M. Shiraiwa, Y. Awaji, and N. Wada, gFirst demonstration of digital coherent transmission in a deployed ROADM network with a 120 Gbit/s polarizationmultiplexed 64 QAM signal,h IEICE Electron. Express, vol. 12, no. 23, 20150884, December (2015).
[465] T. Hirooka and M. Nakazawa, gQfactor analysis of nonlinear impairments in ultrahighspeed Nyquist pulse transmission,h Opt. Express, vol. 23, no. 26, pp. 3348433492, December (2015).
[466] T. Yajima, J. Yamamoto, Y. Kinoshita, F. Ishii, T. Hirooka, M. Yoshida, and M. Nakazawa, gOHfree low loss singlemode fiber fabricated by slurry casting / rodintube method,h IEICE Electron. Express, vol. 12, no. 24, 20151005, December (2015).


2014 


[445] M. Nakazawa, M. Yoshida, T. Hirooka, and K. Kasai, "QAM quantum stream cipher using digital coherent optical transmission," Opt. Express vol. 22, no. 4, pp. 40984107, February (2014).
[446] M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, "Adaptive 4~64 QAM realtime coherent optical transmission over 320 km with FPGAbased transmitter and receiver," Opt. Express vol. 22, no. 13, pp. 1652016527, June (2014).
[447] M. Nakazawa, gExabit optical communication explored using 3M scheme,h Jpn. J. Appl. Phys. vol. 53, 08MA01 (2014).
[448] M. Nakazawa, M. Yoshida, and T. Hirooka, gThe Nyquist laser,h Optica vol. 1, no. 1, pp. 1522, July (2014).
[449] T. Komukai, H. Kubota, T. Sakano, T. Hirooka, and M. Nakazawa, gPlugandplay optical interconnection using digital coherent technology for resilient network based on movable and deployable ICT resource unit,h IEICE Trans. Comm. vol. E97B, no. 7, pp. 13341341, July (2014).
[450] T. Hirooka, M. Nakazawa, T. Komukai, and T. Sakano, g100 Gbit/s realtime digital coherent transmission over a 32 km legacy multimode gradedindex fiber,h IEICE Electron. Express vol. 11, no. 15, 20140563, August (2014).
[451] Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, g60 Gbit/s, 64 QAM LDbased injectionlocked coherent heterodyne transmission over 160 km with a spectral efficiency of 9 bit/s/Hz,h IEICE Electron. Express vol. 11, no. 17, 20140601, September (2014).
[452] D. O. Otuya, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, gSinglechannel 1.92 Tbit/s, PolMux64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 7.5 bit/s/Hz,h Opt. Express, vol. 22, no. 20, pp. 2377623785, October (2014).
[453] K. Harako, D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa,gHighperformance TDM demultiplexing of coherent Nyquist pulses using
timedomain orthogonality,h Opt. Express, vol. 22, no. 24, pp. 2945629464, December (2014).
[454] M. Nakazawa, gEvolution of EDFA from singlecore to multicore and related recent progress in optical communication,h Optical Review, vol. 21, no. 6, pp. 862874, December (2014).
[455] M. Nakazawa, M. Yoshida, and T. Hirooka, gMeasurement of mode coupling distribution along a fewmode fiber using a synchronous multichannel OTDR,h Opt. Express, vol. 22, no. 25, pp. 3129931309, December (2014).
[456] Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, g120 Gbit/s injectionlocked homodyne coherent transmission of polarizationmultiplexed 64 QAM signals over 150 km,h Opt. Express, vol. 22, no. 25, pp. 3131031316, December (2014).


2013 


[434] T. Omiya, M. Yoshida, and M. Nakazawa, g400 Gbit/s 256 QAMOFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency by using highresolution FDE,h Opt. Express vol. 21, no. 3, pp. 26322641, February (2013).
[435] K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, g160 Gbit/s300 km singlechannel transmission in the 1.1 ƒÊm band with a precise GVD and slope compensation,h Opt. Express, vol. 21, no. 4, pp. 43034310, February (2013).
[436] T. Hirooka, K. Harako, P. Guan, and M. Nakazawa, gSecondorder PMDinduced crosstalk between polarizationmultiplexed signals and its impact on ultrashort optical pulse transmission,h J. Lightwave Technol. vol. 31, no. 5, pp. 809814, March (2013).
[437] T. Sakano, Z. M. Fadlullah, T. Kumagai, A. Takahara, T. Ngo, H.Nishiyama, H. Kasahara, S. Kurihara, M. Nakazawa, F. Adachi, and N.Kato, gDisaster resilient networking  a new vision based on movable and deployable resource units,h IEEE Network, vol. 27, no. 4, pp.4046, July/August (2013).
[438] K. Harako, D. Seya, T. Hirooka, and M. Nakazawa, g640 Gbaud(1.28 Tbit/s/ch) optical Nyquist pulse transmission over 525 km with substantial PMD tolerance,h Opt. Express, vol. 21, no. 18, pp.2106321076, September (2013).
[439] D. O. Otuya, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, gA singlechannel 1.92 Tbit/s, 64 QAM coherent optical pulse transmission over 150 km using frequencydomain equalization,h Opt. Express, vol. 21, no. 19, pp. 2280822816, September (2013).
[440] M. Nakazawa, gDisasterresilient networks and optical communication technologies,h Journal of the Institute of Electronics, Information and Communication Engineers, vol. 96, no. 10, pp. 748751, October (2013).
[441] Y. Wang, K. Kasai, T. Omiya, and M. Nakazawa, g120 Gbit/s, polarizationmultiplexed 10 Gsymbol/s, 64 QAM coherent transmission over 150 km using an optical voltage controlled oscillator,h Opt. Express, vol. 21, no. 23, pp. 2829028296, November (2013).
[442] K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, "A singlechannel 1.28 Tbit/s58 km transmission in the 1.1 ƒÊm band with wideband GVD and slope compensation," Opt. Express vol. 21, no. 23, pp. 2905529064, November (2013).
[443] M. Yoshida, T. Hirooka, M. Nakazawa, K. Imamura, R. Sugizaki, and T. Yagi, "Detailed comparison between mode couplings along multicore fibers and structural irregularities using a synchronous multichannel OTDR system with a high dynamic range," Opt. Express vol. 21, no. 24, pp. 2915729164, December (2013).
[444] T. Yajima, J. Yamamoto, F. Ishii, T. Hirooka, M. Yoshida, and M. Nakazawa, "Lowloss photonic crystal fiber fabricated by a slurry casting method," Opt. Express vol. 21, no. 25, pp. 3050030506, December (2013).


2012 


[422] M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, "Ultrahighspeed gorthogonalh TDM transmission with an optical Nyquist pulse train," Opt. Express vol. 20, no. 2. pp. 11291140, Jan. (2012).
[423] M. Nakazawa, T. Hirooka, M. Yoshida, and K. Kasai, gUltrafast coherent optical communication,h IEEE J. Sel. Top. Quantum Electron., vol. 18, no. 1, pp. 363376, Jan. (2012).
[424] K. Kasai, D. O. Otuya, M. Yoshida, T. Hirooka, and M. Nakazawa, gSingleCarrier 800Gb/s 32 RZ/QAM Coherent Transmission Over 225 km Employing a Novel RZCW Conversion Technique,h IEEE Photon. Technol. Lett., vol. 24, no. 5, pp. 416418, March (2012).
[425] M. Yoshida, T. Omiya, K. Kasai, and M. Nakazawa, "64 QAM realtime coherent transmission using FPGAbased receiver," IEICE Trans. Comm., vol. J95B, no. 3, pp. 405413, March (2012)
[426] Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, g1024 QAM (60 Gbit/s) singlecarrier coherent optical transmission over 150 km,h Opt. Express, vol. 20, no. 11, pp. 1250812514, May (2012).
[427] M. Nakazawa, M. Yoshida, and T. Hirooka, gNondestructive measurement of mode couplings along a multicore fiber using a synchronous multichannel OTDR,h Opt. Express, vol. 20, no. 11, pp. 1253012540, May (2012).
[428] T. Hirooka, P. Ruan, P. Guan, and M. Nakazawa, gHighly dispersiontolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km,h Opt. Express, vol. 20, no. 14, pp. 1500115008, July (2012).
[429] K. Toyoda, Y. Koizumi, T. Omiya, M. Yoshida, T. Hirooka, and M. Nakazawa, gMarked performance improvement of 256 QAM transmission using a digital backpropagation method,h Opt. Express, vol. 20, no. 18, pp. 1981519821, August (2012).
[430] T. Hirooka and M. Nakazawa, gLinear and nonlinear propagation of optical Nyquist pulses in fibers,h Opt. Express, vol. 20, no. 18, pp. 1983619849, August (2012).
[431] Y. Koizumi, K. Toyoda, T. Omiya, M. Yoshida, T. Hirooka, and M. Nakazawa, "512 QAM transmission over 240 km using frequencydomain equalization in a digital coherent receiver," Opt. Express vol. 20, no. 21, pp. 2338323389, September (2012).
[432] K. Tokuhira, F. Suzuki, M. Yoshida, and M. Nakazawa, gA Cesium optical atomic clock with high optical frequency stability,h IEICE Electron. Express, vol. 9, no. 18, pp. 14961503, September (2012).
[433] T. Ono, Y. Hori, M. Yoshida, T. Hirooka, M. Nakazawa, J. Mata, and J. Tsukamoto, gA 31 mW, 280 fs passively modelocked fiber soliton laser using a high heatresistant SWNT/P3HT saturable absorber coated with siloxane,h Opt. Express vol. 20, no. 21, pp. 2365923665, October (2012).


2011 


[410] D. Yang, S. Kumar, and M. Nakazawa, gInvestigation and comparison of digital backward propagation schemes for OFDM and singlecarrier fiberoptic transmission systems,h Opt. Fiber Technol., vol. 17, no. 1, pp. 8490, January (2011).
[411] M. Yoshida, S. Okamoto, T. Omiya, K. Kasai, and M. Nakazawa, g256 QAM digital coherent optical transmission using Raman amplifiers,h IEICE Trans. Comm., vol. E94B, no. 2, pp. 417424, February (2011).
[412] P. Guan, H. C. Hansen Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, gSinglechannel 1.28 Tbit/s525 km DQPSK transmission using ultrafast timedomain optical Fourier transformation and nonlinear optical loop mirror,h IEICE Trans. Comm., vol. E94B, no. 2, pp. 430436, February (2011).
[413] E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A.Scavennec, F. A. Kish, D. F. Welch, R. Nagarajan, C. H. Joyner, R. P.Schneider Jr., S. W. Corzine, M. Kato, P. W. Evans, M. Ziari, A. G. Dentai,J. L. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D.J. Richardson, F.Poletti, M. N. Petrovich, S. U. Alam, W. H. Loh and D. N. Payne, gScience and technology challenges in XXIst century optical communications,h Comptes Rendus Physique, vol. 12, no. 4, pp. 387416, May (2011).
[414] K. Kasai, A. Mori, and M. Nakazawa,g1.5ƒÊm Frequencystabilized ƒÉ/4shifted DFB LD employing an external fiber ring cavity with a linewidth of 2.6 kHz and an RIN of  135 dB/Hz ,h IEEE Photon. Technol. Lett., vol. 23, no. 15, pp. 10461048, August (2011).
[415] Y. Wang, K. Kasai, and M. Nakazawa, gPolarizationmultiplexed, 10 Gsymbol/s, 64 QAM coherent transmission over 150 km with OPLLbased homodyne detection employing narrow linewidth LDs,h IEICE Electron. Express, vol. 8, no. 17, pp. 14441449, September (2011).
[416] K. Fukuchi and M. Nakazawa, "Ultra high capacity optical fiber
transmission technologies," IEEJ Journal, vol. 131, no. 9, pp. 611613,
September (2011).
[417] T. Hirooka, T. Hirano, P. Guan, and M. Nakazawa, "PMDinduced
crosstalk in ultrahighspeed polarizationmultiplexed optical transmission
in the presence of PDL," J. Lightwave Technol., vol. 29, no. 19, pp.
29632970, Oct. (2011).
[418] Y. Tomiyama, K. Harako, P. Guan, T. Hirooka, and M. Nakazawa, "Comparison
between polarizationmultiplexed DPSK and singlepolarization DQPSK in
640 Gbaud, 1.28 Tbit/s500 km singlechannel transmission," Opt. Fiber
Technol., invited paper, vol. 17, no. 5, pp. 439444, Oct. (2011).
[419] K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, "A 10 GHz
1.1 ps Regeneratively ModeLocked Yb Fiber Laser in the 1.1 ƒÊm Band,"
Opt. Express, vol. 19, no. 25, pp. 2542625432, Dec. (2011).
[420] P. Guan, T. Hirano, K. Harako, Y. Tomiyama, T. Hirooka, and M. Nakazawa,
"2.56 Tbit/s/ch PolarizationMultiplexed DQPSK Transmission over 300
km Using TimeDomain Optical Fourier Transformation," Opt. Express,
vol. 19, no. 26, pp. B567B573, Dec. (2011).
[421] M. Nakazawa, K. Kasai, M. Yoshida, and T. Hirooka, "Novel RZCW
conversion scheme for ultra multilevel, highspeed coherent OTDM transmission,"
Opt. Express, vol. 19, no. 26, pp. B574B580, Dec. (2011).


2010 


[398] M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, g256QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,h IEEE Photon. Technol. Lett., vol. 22, no. 3, pp. 185187, February (2010).
[399] K. Koizumi, M. Yoshida, and M. Nakazawa, gA 10GHz optoelectronic oscillator at 1.1 μm using a singlemode VCSEL and a photonic crystal fiber,h IEEE Photon. Technol. Lett., vol. 22, no. 5, pp. 293295, March (2010).
[400] M. Nakazawa, gRecent progress on ultrafast/ultrashort/frequencystabilized erbiumdoped fiber lasers and their applications,h Frontiers of Optoelectronics in China, vol. 3, no. 1, pp. 3844, March (2010).
[401] K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, gSinglechannel 400Gb/s OTDM32 RZ/QAM coherent transmission over 225 km using an optical phaselocked loop technique,h IEEE Photon. Technol. Lett., vol. 22, no. 8, pp. 562564, April (2010).
[402] F. Shohda, M. Nakazawa, J. Mata, and J. Tsukamoto, gA 113 fs fiber laser operating at 1.56 μm using a cascadable filmtype saturable absorber with P3HTincorporated singlewall carbon nanotubes coated on polyamide,h Opt. Express, vol. 18, no. 9, pp. 97129721, April (2010).
[403] F. Shohda, Y. Hori, M. Nakazawa, J. Mata, and J. Tsukamoto, g131 fs, 33 MHz allfiber soliton laser at 1.07 ƒÊm with a filmtype SWNT saturable absorber coated on polyimide,h Opt. Express, vol. 18, no. 11, pp. 1122311229, May (2010).
[404] M. Nakazawa, "Advances in information communication technology based on lasers," Journal of Applied Physics (OuyouButsuri, in Japanese), vol. 79, no. 6, pp. 508516, June (2010).
[405] T. Hirano, P. Guan, T. Hirooka, and M. Nakazawa, g640Gb/s/channel singlepolarization DPSK transmission over 525 km with ultrafast timedomain optical Fourier transformation,h IEEE Photon. Technol. Lett., vol. 22, no. 14, pp. 10421044, July (2010).
[406] T. Omiya, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa, g60 Gbit/s 64 QAMOFDM coherent optical transmission with a 5.3 GHz bandwidth,h IEICE Electron. Express, vol. 7, no. 15, pp. 11631168, August (2010).
[407] K. S. Abedin and M. Nakazawa, gReal time monitoring of a fiber fuse using an optical timedomain reflectometer,h Opt. Express, vol. 18, no. 20, pp. 2131521321, Septermber (2010).
[408] T. Morisaki, M. Yoshida, and M. Nakazawa, gOptical frequencytunable Cs atomic clock with a 9.19GHz modehopfree fiber laser,h IEICE Electron. Express, vol. 7, no. 21, pp. 16521658, November (2010).
[409] P. Guan, H. C. Hansen Mulvad, K. Kasai, T. Hirooka, and M. Nakazawa, gHigh TimeResolution 640Gb/s Clock Recovery Using TimeDomain Optical Fourier Transformation and Narrowband Optical Filter,h IEEE Photon. Technol. Lett., vol. 22, no. 23, pp. 17351737, December (2010).


2009 


[387] M. Nakazawa, "Ultramultilevel coherent QAM optical transmission technology," Review of Laser Engineering (in Japanese), vol. 37, no. 3, pp. 101106, March (2009).
[388] K. S. Abedin, M. Nakazawa, and T. Miyazaki, "Backreflected radiation due to a propagating fiber fuse," Opt. Express, vol. 17, no. 8, pp. 65256531, April (2009).
[389] S. Masuda, S. Niki, and M. Nakazawa, "Environmentally stable, simple passively modelocked fiber ring laser using a fourport circulator," Opt. Express, vol. 17, no. 8, pp. 66136622, April (2009).
[390] K. Kasai and M. Nakazawa, gFMeliminated C_{2}H_{2} frequencystabilized laser diode with an RIN of 135 dB/Hz and a linewidth of 4 kHz,h Opt. Lett., vol. 34, no. 14, pp. 22252227, July (2009).
[391] M. Nakazawa, g20 years of EDFA and future prospects,h IEICE Trans. Electron. (in Japanese), vol. J92C, no. 8, pp. 339359, August (2009).
[392] T. Hirooka, M. Okazaki, T. Hirano, P. Guan, M. Nakazawa, and S. Nakamura, gAlloptical demultiplexing of 640Gb/s OTDMDPSK signal using a semiconductor SMZ switch,h IEEE Photon. Technol. Lett., vol. 21, no. 20, pp. 15741576, October (2009).
[393] K. S. Abedin, T. Miyazaki, and M. Nakazawa, gMeasurements of spectral broadening and Doppler shift of backreflections from a fiber fuse using heterodyne detection,h Opt. Lett., vol. 34, no. 20, pp. 31573159, October (2009).
[394] P. Guan, M. Okazaki, T. Hirano, T. Hirooka, and M. Nakazawa, gLowpenalty 5x320 Gbit/s/singlechannel WDM DPSK transmission over 525 km using timedomain optical Fourier transformation,h IEEE Photon. Technol. Lett., vol. 21, no. 21, pp. 15791581, November (2009).
[395] K. Koizumi, M. Yoshida, and M. Nakazawa, g10GHz 11.5ps pulse generation from a singlemode gainswitched InGaAs VCSEL at 1.1 μm,h IEEE Photon. Technol. Lett., vol. 21, no. 22, pp. 17041706, November 2009.
[396] K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, g10 Gbit/s photonic crystal fiber transmissions with 1.1 μm directlymodulated singlemode VCSEL,h IEICE Electron. Express, vol. 6, no. 22, pp. 16151620, November 2009.
[397] F. Shohda, M. Nakazawa, R. Akimoto, and H. Ishikawa, gAn 88 fs fiber soliton laser using a quantum well saturable absorber with an ultrafast inersubband transition,h Opt. Express, vol. 17, no. 25, pp. 2249922504, December 2009.


2008 


[372] K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, gThe use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission,h IEICE Electron. Express, vol. 5, no. 1, pp. 610, January (2008).
[373] M. Yoshida, H. Goto, K. Kasai, and M. Nakazawa, g64 and 128 coherent QAM optical transmission over 150 km using frequencystabilized laser and heterodyne PLL detection,h Opt. Express, vol. 16, no. 2, pp. 829840, January (2008).
[374] M. Nakazawa and M. Yoshida, gScheme for independently stabilizing the repetition rate and optical frequency of a laser using a regenerative modelocking technique,h Opt. Lett., vol. 33. no. 10, pp. 10591061, May (2008).
[375] T. Hirooka, M. Nakazawa, and K. Okamoto, gBright and dark 40 GHz parabolic pulse generation using a picosecond optical pulse train and an arrayed waveguide grating ,h Opt. Lett., vol. 33, no. 10, pp. 11021104, May (2008).
[376] T. Hirooka, M. Okazaki, and M. Nakazawa, gA straightline 160Gb/s DPSK transmission over 1000 km with timedomain optical Fourier transformation,h IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 10941096, July (2008).
[377] H. T. Quynhanh, A. Suzuki, M. Yoshida, T. Hirooka, and M. Nakazawa, gA λ/4shifted distributedfeedback laser diode with a fiber ring cavity configuration having an OSNR of 85 dB and a linewidth of 7 kHz,h IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 15781580, September (2008).
[378] H. Goto, M. Yoshida, T. Omiya, K. Kasai, and M. Nakazawa, gPolarization and frequency division multiplexed 1Gsymbol/s, 64 QAM coherent optical transmission with 8.6bit/s/Hz spectral efficiency over 160km,h IEICE Electron. Express, vol. 5, no. 18, pp. 776781, September (2008).
[379] Y. Nakajima, H. Inaba, F. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, "Optimized amplification of femtosecond optical pulses by dispersion management for octavespanning optical frequency comb generation," Opt. Comm., vol. 281, no. 17, pp. 44844487, September (2008).
[380] T. Hirooka, K. Osawa, M. Okazaki, M. Nakazawa, and H. Murai, gStimulated Brillouin scattering in ultrahighspeed inphase RZ and CSRZ OTDM transmission,h IEEE Photon. Technol. Lett., vol. 20, no. 20, pp. 16941696, October (2008).
[381] T. Hirooka and M. Nakazawa, "Alloptical 40GHz timedomain Fourier transformation using XPM with a dark parabolic pulse," IEEE Photon. Technol. Lett., vol. 20, no. 22, pp. 18691871, November (2008).
[382] T. Hirooka, M. Okazaki, P. Guan, and M. Nakazawa, "320Gb/s singlepolarization DPSK transmission over 525 km using timedomain optical Fourier transformation," IEEE Photon. Technol. Lett., vol. 20, no. 22, pp. 18721874, November (2008).
[383] M. Nakazawa, K. Kasai, and M. Yoshida, "C_{2}H_{2} absolutely optical frequencystabilized and 40 GHz repetitionratestabilized, regeneratively modelocked picosecond erbium fiber laser at 1.53 m," Opt. Lett., vol. 33, no. 22, pp. 26412643, November (2008).
[384] F. Shohda, T. Shirato, M. Nakazawa, J. Mata, and J. Tsukamoto, "147 fs, 51 MHz soliton fiber laser at 1.56 m with a fiberconnectortype SWNT/P3HT saturable absorber," Opt. Express, vol. 16, no. 25, pp. 2094320948, December (2008).
[385] M. Okazaki, P. Guan, T. Hirooka, M. Nakazawa, and T. Miyazaki, "160Gb/s 200km field transmission experiment with large PMD using a timedomain optical Fourier transformation technique," IEEE Photon. Technol. Lett., vol. 20, no. 24, pp. 21922194, December (2008).
[386] F. Shohda, T. Shirato, M. Nakazawa, K. Komatsu, and T. Kaino, "A passively modelocked femtosecond soliton fiber laser at 1.5 ƒÊm with a CNTdoped polycarbonate saturable absorber," Opt. Express, vol. 16, no. 26, pp. 2119121198, December (2008).


2007 


[356] H. Hasegawa, Y. Oikawa, and M. Nakazawa, g10 Gbit/s 2 km photonic crystal fiber transmission with 850 nm directly modulated singlemode VCSEL,h Electron. Lett., vol. 43, no. 2, pp. 117119, January (2007).
[357] M. Nakazawa, M. Yoshida, and T. Hirooka, gUltrastable regeneratively modelocked laser as an optoelectronic microwave oscillator and its application to optical metrology,h IEICE Trans. Electron., Invited paper, vol. E90C, no. 2, pp. 443449, February (2007).
[358] K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, gOptical phaselocked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,h IEICE Electron. Express, vol. 4, no. 3, pp. 7781, February (2007).
[359] Y. Oikawa, H. Hasegawa, K. Suzuki, Y. Inoue, T. Hirooka, and M. Nakazawa, g4x10 Gb/s WDM transmission over a 5kmlong photonic crystal fiber in the 800nm region,h IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 613615, April (2007).
[360] A. Suzuki, Y. Takahashi, M.Yoshida, and M. Nakazawa, gA CW polarizationmaintaining λ/4 shifted DFB Erdoped fiber laser at 1.54 μm,h IEICE Electron. Express, vol. 4, no. 8, pp. 251257, April (2007).
[361] J. Hongo, K. Kasai, M. Yoshida, and M. Nakazawa, g1Gsymbol/s 64QAM coherent optical transmission over 150 km,h IEEE Photon. Technol. Lett., vol. 19, no. 9, pp. 638640, May (2007).
[362] T. Hirayama, M. Yoshida, M. Nakazawa, K. Hagimoto, and T. Ikegami, gModelocked lasertype optical atomic clock with an optically pumped Cs gas cell,h Opt. Lett., vol. 32, no. 10, pp. 12411243, May (2007).
[363] H. Hasegawa, Y. Oikawa, T. Hirooka, and M. Nakazawa, g40 Gbit/s2 km photonic crystal fiber transmission with 850 nm singlemode VCSEL,h Electron. Lett., vol. 43, no. 11, pp. 642644, May (2007).
[364] M. Yoshida, T. Hirayama, M. Nakazawa, K. Hagimoto, and T. Ikegami, gRegeneratively modelocked fiber laser with a repetition rate stability of 4.9~10^{15} using a hydrogen maser phaselocked loop,h vol. 32, no. 13, pp. 18271829, July (2007).
[365] M. Yoshida, K. Kasai, and M. Nakazawa, gModehopfree, optical frequency tunable 40 GHz modelocked fiber laser,h IEEE J. Quantum Electron., vol. 43, no. 8, pp. 704708, August (2007).
[366] M. Nakazawa, H. Hasegawa, and Y. Oikawa, g10GHz 8.7ps pulse generation from a singlemode gainswitched AlGaAs VCSEL at 850 nm,h IEEE Photon. Technol. Lett,, vol. 19, no. 16, pp. 12511253, August (2007).
[367] H. Hasegawa, Y. Oikawa, and M. Nakazawa, gA 10GHz optoelectronic oscillator at 850 nm using a singlemode VCSEL and a photonic crystal fiber,h IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 14511453, October (2007).
[368] A. Suzuki, Y. Takahashi, M. Yoshida, and M. Nakazawa, gAn ultralow noise and narrow linewidth λ/4shifted DFB Erdoped fiber laser with a ring cavity configuration,h IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 14631465, October (2007).
[369] M. Nakazawa, T. Hirooka, and M. Yoshida, gOptical fiber transmission of standard signals using optical combs,h The Review of Laser Engineering (in Japanese), vol. 35, no. 10, pp. 649653, October (2007).
[370] T. Hirayama, M. Yakabe, M. Yoshida, M. Nakazawa, Y. Koga, and K. Hagimoto, gAn ultrastable Cs optical atomic clock with a 9.1926GHz regeneratively modelocked fiber laser,h IEICE Trans. Electron. (in Japanese), vol. J90C, no. 12, pp. 977987, December (2007).
[371] M. Yoshida, A. Ono, and M. Nakazawa, "10 GHz regeneratively modelocked semiconductor optical amplifier fiber ring laser and its linewidth characteristics," Opt. Lett., vol. 32, no. 24, pp. 35133515, December (2007).


2006 


[344] M. Nakazawa and T. Hirooka, gABCD matrix formalism of timedomain optical Fourier transformation for distortionfree pulse transmission,h IEICE Electron. Express, vol. 3, no. 4, pp. 7479, February (2006).
[345] H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, g10 Gb/s transmission over 5 km at 850 nm using singlemode photonic crystal fiber, singlemode VCSEL, and SiAPD,h IEICE Electron. Express, vol. 3, no.6, pp. 109114, March (2006).
[346] M. Nakazawa, S. Nakahara, T. Hirooka, M. Yoshida, T. Kaino, and K. Komatsu, gPolymer saturable absorber materials in the 1.5 μm band using polymethylmethacrylate and polystyrene with singlewall carbon nanotubes and their application to a femtosecond laser,h Opt. Lett., vol. 31, no. 7, pp. 915917, April (2006).
[347] M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, g20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequencystabilised laser,h Electron. Lett., vol. 42, no. 12, pp. 710712, June (2006).
[348] H. Inaba, Y. Daimon, F. L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, gLongterm measurement of optical frequencies using a simple, robust and lownoise fiber based frequency comb,h Opt. Express, vol. 14, no. 12, pp. 52235231, June (2006).
[349] T. Hirooka and M. Nakazawa, gOptical adaptive equalization of highspeed signals using timedomain optical Fourier transformation,h Invited paper, J. Lightwave Technol., vol. 24, no. 7, pp. 25302540, July (2006).
[350] Y. Oikawa, H. Hasegawa, T. Hirooka, M.Yoshida, and M. Nakazawa, "Ultrabroadband dispersion measurement of photonic crystal fiber with picosecond streak camera and groupdelayfrees supercontinuum," IEICE Trans. Electron. (in Japanese), vol. J89C, no. 7, pp. 450457, July (2006).
[351] T. Hirooka, T. Kumakura, K. Osawa, and M. Nakazawa, gComparison of 40 GHz optical demultiplexers using SMZ switch and EA modulator in 160 Gbit/s500 km OTDM transmission,h IEICE Electronics Express, vol. 3, no. 17, pp. 397403, September (2006).
[352] M. Nakazawa and T. Hirooka, "Recent progress and future prospects for highspeed optical transmission technology using an ultrashort optical pulse train," Invited paper, IEICE Trans. Comm.(in Japanese), vol. J89B, no. 11, pp. 20672081, November (2006).
[353] K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, gPerformance improvement of an acetylene (C_{2}H_{2}) frequencystabilized fiber laser,h IEICE Electron. Express, vol.3, no. 22, pp. 487492, November (2006).
[354] A. Suzuki, Y. Takahashi, and M. Nakazawa, gA polarizationmaintained, ultranarrow FBG filter with a linewidth of 1.3 GHz,h IEICE Electron. Express, vol. 3, no. 22, pp. 469473, November (2006).
[355] T. Hirooka, K. Hagiuda, T. Kumakura, K. Osawa, and M. Nakazawa, g160 Gb/s600 km OTDM transmission using timedomain optical Fourier transformation,h IEEE Photon. Technol. Lett., vol. 18, no. 24, pp. 26472649, December (2006).


2005 


[332] M. Nakazawa and T. Hirooka, gDistortionfree transmission of ultrashort optical pulses using timedomain optical Fourier transformation,h Japanese Journal of Optics (in Japanese), vol. 34, no. 1, pp. 2631, January (2005).
[333] T. Hirooka, S. Ono, K. Hagiuda, and M. Nakazawa, gStimulated Brillouin scattering in dispersiondecreasing fiber with ultrahighspeed femtosecond soliton pulse compression,h Opt. Lett., vol. 30, no. 4, pp. 364366, Feb. (2005).
[334] K. Haneda, M. Yoshida, H. Yokoyama, Y. Ogawa, and M. Nakazawa, "Measurements of longitudinal linewidth and relative intensity noise in ultrahighspeed modelocked semiconductor lasers, " IEICE Trans. Electron., vol. J88C, no. 3, pp. 161168, March (2005).
[335] K. Hagiuda, T. Hirooka, M. Nakazawa, S. Arahira, and Y. Ogawa, g40GHz,
100fs stimulatedBr/p>llouinscatteringfree pulse generation by combining
a modelocked laser diode and a dispersiondecreasing fiber,h Opt. Lett.,
vol. 30, no. 6, pp. 670672, March (2005).
[336] K. Haneda, M. Yoshida, M. Nakazawa, H. Yokoyama, and Y. Ogawa, gLinewidth and relative intensity noise measurements of longitudinal modes in ultrahighspeed modelocked laser diodes,h Opt. Lett., vol. 30, no. 9, pp. 10001002, May (2005).
[337] M. Yakabe, K. Nito, M. Yoshida, M. Nakazawa, Y. Koga, K. Hagimoto, and T. Ikegami, gUltrastable cesium atomic clock with a 9.1926GHz regeneratively modelocked fiber laser,h Opt. Lett., vol. 30, no. 12, pp. 15121514, June (2005).
[338] H. Hasegawa, T. Hirooka, and M. Nakazawa, gA new method for optimum dispersion designing of zerodispersion and dispersionflattened photonic crystal fibers,hIEICE Trans. Electron. (in Japanese), vol. J88C, no. 7, pp. 519527, July (2005).
[339] T. Hirooka, M. Nakazawa, F. Futami, and S. Watanabe,gUltrahighspeed distortionfree optical pulse transmission using timedomain optical Fourier transformation,hIEICE Trans. Comm. (in Japanese), vol. J88B, no. 8, pp. 14021410, August (2005).
[340] M. Nakazawa and T. Hirooka, gDistortionfree optical transmission using timedomain optical Fourier transformation and transformlimited optical pulses,h J. Opt. Soc. Am. B, vol. 22, no. 9, pp. 18421855, September (2005).
[341] M. Yakabe, K. Nito, M. Yoshida, and M. Nakazawa, "Microwave frequency tuning characteristics of an optomicrowave oscillator made of fiber laser and its application to Ramsey fringe observation of Cs atoms," IEICE Trans. Comm., vol. J88B, no. 9, pp. 18291836, September (2005).
[342] K. Kasai, M. Yoshida, and M. Nakazawa, "Acetylene (^{13}C_{2}H_{2}) stabilized singlepolarization fiber laser," IEICE Trans. Electron., vol. J88C, no. 9, pp. 708715, September (2005).
[343] H. Hasegawa, M. Kikegawa, M. Yoshida, T. Hirooka, and M. Nakazawa, "Observation of optimum airhole tapering of splicing between a conventional fiber and a photonic crystal fiber and analysis of reduction of Fresnel reflection," IEICE Trans. Electron., vol. J88C, no. 10, pp. 779787, October (2005).


2004 


[326] T. Hirooka and M. Nakazawa, "Parabolic pulse generation
by use of a dispersiondecreasing fiber with normal groupvelocity
dispersion, " Opt. Lett., vol. 29, no. 5, pp. 498500, March
(2004).
[327] M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, "Ideal
distortionfree transmission using optical Fourier transformation
and Fourier transformlimited optical pulses, " IEEE Photon.
Technol. Lett., vol. 16, no. 4, pp. 10591061, April (2004).
[328] T. Hirooka, Y. Hori, and M. Nakazawa, "Gaussian and
sech approximations of mode field profiles in photonic crystal fibers,
" IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 10711073,
April (2004).
[329] M. Yoshida, T. Yaguchi, S. Harada, and M. Nakazawa, "A
40 GHz regeneratively and harmonically modelocked erbiumdoped
fiber laser and its longitudinalmode characteristics, " IEICE
Trans. Electron., vol. E87C, no. 7, pp. 11661172, July (2004).
[330] T. Hirooka, M. Nakazawa, F. Futami, and S. Watanabe, "A
new adaptive equalization scheme for 160 Gbit/s transmitted signals
using timedomain optical Fourier transformation, " IEEE Photon.
Technol. Lett., vol. 16, no. 10, pp. 23712373, October (2004).
[331] M. Nakazawa, "
Photonic crystal fibers and their applications, "
Japanese Journal of Applied Physics (OuyouButsuri, in Japanese),
vol. 73, no. 11, pp. 14091417, November (2004).


2003 


[320] M. Nakazawa, gOptical amplifiers and their application to fiber
lasers,h Japanese Journal of Optics (in Japanese), vol. 32, no. 2,
pp. 119128, February (2003).
[321] M. Nakazawa, gHigh precision frequency standards using modelocked
fiber lasers,h The Review of Laser Engineering, vol. 31, no. 7,
pp. 443449, July (2003).
[322] M. Nakazawa, gUltrafast OTDM transmission technology,h Journal
of IEICE (in Japanese), vol. 86, no. 8, pp. 588593, August (2003).
[323] M. Yoshida, M. Kikegawa, N. Nishimura, and M. Nakazawa, gObservation
of huge Fresnel reflection at a splicing point between a photonic
crystal fiber and a conventional fiber and its suppression,h IEICE Trans. Electron.
(in Japanese), vol. J86C, no. 9, pp. 10071016, September
(2003).
[324] S. Choi, M. Yoshida, and M. Nakazawa, gMeasurements of longitudinal
linewidths of 10 GHz, picosecond modelocked erbiumdoped fiber
lasers using a heterodyne detection method,h IEICE Trans. Electron. (in
Japanese), vol. J86C, no. 10, pp. 10541062, October (2003).
[325] M. Nakazawa, gPhotonic crystal fibers and their application
to ultrashort pulse propagation,h Japanese Journal of Optics (in
Japanese), vol. 32, no. 10, pp. 606612, October (2003).


2002 


[316] M. Nakazawa, T. Yamamoto, and K. R. Tamura, "Ultrahighspeed
OTDM transmission beyond 1 Tera bitpersecond using a femtosecond
pulse train," IEICE Trans. Electron., vol. E85C, no. 1, pp.
117125 January (2002).
[317] T. Inui, T. Komukai, M. Nakazawa, K. Suzuki, K. R. Tamura,
K. Uchiyama, and T. Morioka, gAdaptive dispersion slope equalizer
using a nonlinearly chirped fiber Bragg grating pair with a novel
dispersion
detection technique,h IEEE Photon. Technol. Lett., vol. 14, no.
4, pp. 549551, April (2002).
[318] M. Nakazawa, gPhotonic crystal fibers,h The Review of Laser
Engineering, vol. 30, no. 8, pp. 426434, August (2002).
[319] H. Inaba, A. Onae, Y. Akimoto, T. Komukai, and M. Nakazawa,
gObservation of acetylene molecular absorption line with tunable,
singlefrequency, and modehopfree erbiumdoped fiber ring laser,h
IEEE J.
Quantum Electron., vol. 38, no. 10, pp. 13251330, October (2002).


2001 


[302] A. Sahara, T. Komukai, E. Yamada and M. Nakazawa, "
40 Gbit/s returntozero transmission over 500 km of standard fibre
using chirped fibre Bragg grating with small group delay ripples,"
Electron. Lett., vol. 37, pp. 89, January (2001).
[303]S. Yagi, T. Maruyama, H. Nagai, T. Izawa, K. Washio, Y. Nagaki,
K. Goto, M. Nakazawa, and T. Yuuzu, "Development of lasers
in the 20th century and prospect in the future," The Review
of Laser Engineering, vol. 29, no. 1, pp. 3755 January (2001).
[304] S. Suzuki, Y. Kokubun, M. Nakazawa, T. Yamamoto, and S. T.
Tak," Ultrashort optical pulse transmission characteristics
of vertically coupled microring resonator add/drop filter,"
IEEE/OSA, J. Lightwave Technol., vol. 19, no.2, pp. 266271, February
(2001).
[305] T. Komukai, T. Inui, and M. Nakazawa,
" Very low group delay ripple characteristics of fibre Bragg grating with chirp induced by an Scurve bending technique,"
Electron. Lett., vol. 37, no. 7, pp. 449451, March (2001).
[306] T. Inui, T. Komukai, M. Nakazawa," Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers," Opt. Commun., vol. 190, pp. 14, April (2001).
[307] M. Nakazawa, A. Sahara, and H. Kubota," Propagation
of a solitonlike nonlinear pulse in average normal groupvelocity
dispersion and its unsuitability for a highspeed, longdistance
optical communication," J. Opt. Soc. Amer., vol. B18, pp.
409418, April (2001).
[308] T. Yamamoto and M. Nakazawa," Third and fourthorder
active dispersion compensation with a phase modulator in a terabitpersecond
optical timedivision multiplexed transmission," Opt. Lett.,
vol. 26, pp. 647649, May (2001).
[309] M. Nakazawa and K. Suzuki, " Cesium optical atomic clock:
an optical pulse that tells the time," Opt. Lett., vol. 26,
pp. 635637, May (2001).
[310] K. R. Tamura, and M Nakazawa, "A polarizationmaintaining
pedestalfree femtosecond pulse compressor incorporating an ultrafast
dispersionimbalanced nonlinear optical loop mirror," IEEE
Photon. Technol. Lett., vol. 13, no. 5, pp. 526528, May (2001).
[311] K. R. Tamura and M. Nakazawa, "54fs, 10GHz soliton
generation from a polarizationmaintaining dispersionflattened
dispersiondecreasing fiber pulse compressor," Opt. Lett.,
vol. 26, no.11, pp. 762764, June (2001).
[312] S. Kawanishi, T. Yamamoto, M. Nakazawa, and M. M. Fejer, gHigh sensitivity waveform measurement with optical sampling using quasiphasematched mixing in LiNbO3 waveguide,h Electron. Lett., vol. 37, no. 13, pp. 842844, June (2001).
[313] T. Komukai, T. Inui, and M. Nakazawa, "Origin of group
delay ripple in chirped fiber Bragg gratings and its effective reduction
method," IEIEC of Japan, C, vol. J84C, no.8, pp. 673680,
August (2001).
[314] T. Yamamoto, K. R. Tamura, and M. Nakazawa, "1.28 Tbit/s70km
OTDM femtosecondpu1se transmission using third and fourthorder
simultaneous dispersion compensation with a phase modu1ator,"
IEIEC of Japan, B, vol. J84B, no. 9, pp. 15871597, September (2001).
[315] K. R. Tamura, Y. Inoue, K. Sato, T. Komukai, A. Sugita, and M. Nakazawa, gA discretely tunable modelocked laser with 32 wavelengths and 100GHz channel spacing using an arrayed waveguide grating,h IEEE Photon. Technol. Lett., vol. 13, no. 11, pp. 12271229, November (2001).


2000 


[285] K. Suzuki, H. Kubota, A. Sahara, and M. Nakazawa, "640
Gbit/s (40 Gbit/s x 16 channel) dispersionmanaged DWDM soliton
transmission over 1,000 km with a spectral efficiency of 0.4 bit/Hz",
Electron. Lett., vol. 36, No. 5, pp.443445, March (2000).
[286] T. Yamamoto, E. Yoshida, K. Tamura, K. Yonenaga, and M. Nakazawa,
"640 Gbit/s optical TDM transmission over 92 km through a dispersionmanaged
fiber consisting of singlemode fiber and "reverse dispersion
fiber", IEEE Photon. Technol. Lett., Vol. 12, No. 3, pp. 353355,
March (2000).
[287] T. Komukai, T. Inui, and M. Nakazawa, "The design of
dispersion equalizers using chirped fiber Bragg gratings",
IEEE J. Quantum Electron., vol. 36, pp. 409417, April (2000).
[288] M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada and A. Sahara,"
Ultrahighspeed, longdistance TDM and WDM soliton transmission
technologies," IEEE, J. Selected Topics in Quantum Electronics,
vol. 6, no. 2, pp. 363394, April (2000).
[289] T. Yamamoto, E. Yoshida, K. R. Tamura, and M. Nakazawa,"100
km transmission of 640 Gbit/s OTDM signal using femtosecond pulses,"
IEICE Trans. Commun. (in Japanese), Vol. J83B No. 5, pp. 625633, May
(2000).
[290] K. R. Tamura, H. Kubota, and M. Nakazawa, " Fundamentals
of stable continuum generation at high repetition rate," IEEE,
J. Quantum Electron., vol. 36, No. 7, pp. 773779, July (2000).
[291] H. Inaba, Y. Akimoto, K. Tamura, E. Yoshida, T. Komukai,
and M. Nakazawa, " Experimental observation of mode behavior
in erbiumdoped optical fiber ring laser," Optics Commun.,
vol. 180, pp. 121125, June(2000).
[292] A. Sahara, T. Inui, T. Komukai, H. Kubota, and M. Nakazawa,
" 40Gb/s RZ transmission over transoceanic distance in a dispersion
managed standard fiber using a new inline synchronous modulation
method," IEEE, Photon. Tech. Lett., vol. 12 No. 6, pp. 720722,
June (2000).
[293] T. Komukai, T. Inui, and M. Nakazawa, " Group delay
ripple reduction and reflectivity increase in a chirped fiber Bragg
grating by multipleoverwriting of a phase mask with an electron
beam," IEEE, Photon. Tech. Lett., vol. 12, No. 7, July (2000).
[294] M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara,
" Recent progress in soliton transmission technology,"
American Inst. of Physics, Chaos (Invited paper), vol. 10, No. 3,
pp. 486514, September (2000).
[295] A. Sahara, T. Inui, T. Komukai, H. Kubota, and M. Nakazawa,
" 40Gb/s RZ transmission over transoceanic distance in a dispersion
managed standard fiber using a modified inline synchronous modulation
method," IEEE/OSA, J. Lightwave Technol., vol. 18, No. 10,
pp. 13641373, October (2000).
[296] H. Kubota and M. Nakazawa, " Simulation method for optical
soliton pulse propagation," J. of IEICE (in Japanese), vol.
83, No. 11, pp. 866871, November (2000).
[297] H. Kubota, K. Tamura, and M. Nakazawa, " Effect of ASE
noise on coherence for supercontinuum light source by soliton compression,"
IEICE Trans. Electron. (in Japanese), vol. J83C, No. 11,
pp. 10051011, November (2000).
[298] M. Nakazawa, T. Yamamoto, K. R. Tamura, " 1.28 Tbit/s70
km OTDM transmission using third and fourthorder simultaneous
dispersion compensation with a phase modulator," Electron.,
Lett., vol. 36, No. 24, pp. 20272029, November (2000).
[299] M. Nakazawa and E.Yoshida," A 40 GHz, 850 fs regeneratively
FM modelocked polarizationmaintaining erbium fiber ring laser,"
IEEE, Photon. Tech. Lett.,, vol. 12, No. 12, pp. 16131615 December(2000).
[300] T. Inui, T. Komukai, and M. Nakazawa, " A wavelengthtunable
Dispersion equalizer using a nonlinearly chirped fiber Bragg grating
pair mounted on multilayer piezoelectric transducer," Photon.
Tech. Lett., vol. 12, pp. 16681670, December (2000).
[301] M. Nakazawa," Solitons for breaking barriers to terabit/second
WDM and OTDM transmission in the next Millennium," IEEE, J,
Selected Topics in Quantum Electronics (Millennium Issue invited
paper), vol. 6, No. 6, pp. 13321343, November/December(2000).


1999 


[265] A. Sahara, H. Kubota, and M. Nakazawa, "Ultrahigh speed
soliton transmission in presence of polarisation mode dispersion
using inline synchronous modulation," Electron. Lett., vol.
35, pp. 7677, January (1999).
[266] Y. Yamabayashi, M. Nakazawa, and K. Takiguchi," Terabit
transmission technologies," NTT R&D Journal Special Issue
on Challenges to Terabit/s Communication Technologies (In Japanese),
vol. 48, pp. 4358, January (1999).
[267] M. Nakazawa, "Modelocked fiber laser technology for
ultrahighspeed TDM optical transmission," NTT R&D Journal
Special Issue on Challenges to Terabit/s Communication Technologies
(In Japanese), vol. 48, pp. 5966, January (1999).
[268] M. Nakazawa, K. Suzuki and H. Kubota," Singlechannel
80 Gbit/s soliotn transmission over 10000 km using inline synchronous
modulation," Electron. Lett., vol. 35, pp. 162163, January
(1999).
[269] K. R. Tamura, and M. Nakazawa," Spectralsmoothing and
pedestal reduction of wavelength tunable quasiadiabatically compressed
femtosecond solitons using a dispersionflattened dispersionimbalanced
loop mirror," IEEE, Photon. Tech. Lett., vol. 11, pp.230233,
February (1999).
[270] A. Sahara, H. Kubota, and M. Nakazawa," Comparison of
the dispersion allocated WDM (10 Gbit/sx 10 channels) optical soliton
and NRZ systems using a Q map," Opt. Commun., vol. 160, pp.
139145, February (1999).
[271] M. Nakazawa, H. Kubota, and K. Tamura," Random evolution
and coherence degradation of a highorder optical soliton train
in the presence of noise," Opt. Lett., vol. 24, pp. 318320,
March (1999).
[272] K. R. Tamura and M. Nakazawa," Femtosecond soliton generation
over 32nm wavelength range using a dispersionflattened dispersiondecreasing
fiber," IEEE, Photon. Tech. Lett., vol. 11, pp. 319321, March
(1999).
[273] T. Yamamoto, E. Yoshida, and M. Nakazawa," Demultiplexing
of subterabit TDM signal by using ultrafast nonlinear optical loop
mirror," IEICE Trans. Electron., CI (In Japanese), vol. J82, pp. 109116,
March (1999).
[274] Y. Yamabayashi, H. Toba, and M. Nakazawa," Stateoftheart
and future perspectives of time division multiplexing (TDM) high
bit rate optical transmission," The Review of Laser Engineering
(In Japanese), vol. 27, pp. 231239, April(1999).
[275] K. Suzuki, H. Kubota, E. Yamada, A. Sahara, and M. Nakazawa,"
40 Gbit/s soliton transmission field experiment using dispersion
management," The Review of Laser Engineering (In Japanese),
vol. 27, pp. 268273, April (1999).
[276] E. Yoshida and M. Nakazawa," Ultrashort pulse generation
at high repetition rate from modelocked fiber lasers," The
Review of Laser Engineering (In Japanese), vol. 27, pp. 274280,
April (1999).
[277] E. Yamada, T. Imai, T. Komukai, and M. Nakazawa," 10
Gbit/s soliton transmission over 2900 km using 1.3 m‚singlemode
fibres and dispersion compensation using chirped fibre Bragg gratings,"
Electron. Lett., vol. 35, pp. 728729, April (1999).
[278] E. Yoshida and M. Nakazawa," Measurement of the timing
jitter and pulse energy fluctuation of a PLL regeneratively modelocked
fiber laser," IEEE Photonics Tech. Lett., vol. 11, pp. 548550,
May (1999)
[279] T. Komukai, T. Imai, M. Nakazawa," Design of dispersion
equalizers using chirped Bragg gratings," IEICE Trans. Electron. (In
Japanese), Vol. J82CI, pp. 359369, June (1999).
[280] M. Nakazawa, K Suzuki, and H. Kubota, "160 Gbit/s (80
Gbit/s x 2 channels) WDM soliton transmission over 10,000 km using
inline synchronous modulation", Electron. Lett., vol. 35,
No. 16, pp. 13581359, September (1999).
[281] K. Tamura, T. Komukai, and M. Nakazawa, "A new optical
routing technique with a subcarrier clock controlled wavelength
converter", IEEE Photon. Technol. Lett., vol. 11, No. 11, pp.
14911493, November (1999).
[282] E. Yoshida, K Tamura, and M. Nakazawa," Modelocked
fiber ring lasers," The Review of Laser Engineering (In Japanese),
vol. 27, No.11, pp. 756761, November (1999).
[283] H. Kubota, K. Tamura, and M. Nakazawa, "Analyses of
coherencemaintained ultrashort optical pulse trains and supercontinuum
generation in the presence of solitonamplified spontaneousemission
interaction", J. Opt. Soc. Am. B, vol. 16, No. 12, pp. 22232232,
December (1999).
[284] E. Yoshida, N. Shimizu, and M. Nakazawa, "A 40 GHz,
0.9 ps regeneratively modelocked fiber laser with a tuning range
of 1530  1560 nm", IEEE Photon. Technol. Lett., vol. 11, No.
12, pp.15871589, December (1999).


1998 


[246] M. Nakazawa, K. Suzuki, H. Kubota, A. Sahara, and E. Yamada,"
160 Gbit/s WDM (20 Gbit/s x 8 channels) soliton transmission over
10000 km using inline synchronous modulation and optical filtering,"
Electron. Lett., vol. 34, No. 1, pp. 103104, January (1998).
[247] K. Suzuki, H. Kubota, A. Sahara and M. Nakazawa,"40Gbit/s
single channel optical soliton transmission over 70000 km using
inline synchronous modulation and optical filtering," Electron.
Lett., vol. 34, No. 1, pp. 9899, January (1998).
[248] K. Tamura, E. Yoshida, and M. Nakazawa," Forced phase
modulation and self phase modulation effects in dispersiontuned
modelocked fiber lasers," IEICE Trans. Electron., vol. E81C,
No. 2, pp. 195200, February (1998).
[249] E. Yoshida, K. Tamura, and M. Nakazawa," Intracavity
dispersion effects of a regeneratively and harmonically FM modelocked
erbiumdoped fiber laser," IEICE Trans. Electron., vol. E81C,
No. 2, pp. 189194, February (1998).
[250] T. Yamamoto, and M. Nakazawa," Efficient optical pulse
compression with optical gain via fourwave mixing," IEICE
Trans. Electron., CI, vol. J81CI, No. 3, pp. 148157, March (1998).
[251] T. Komukai, and M. Nakazawa," Longphase errorfree
fiber Bragg gratings," IEEE, Photon. Tech. Lett., vol. 10,
No. 5, pp. 687689, May (1998).
[252] M. Nakazawa, E. Yoshida, T. Yamamoto, and A. Sahara,"
TDM single channel 640 Gbit/s transmission experiment over 60 km
using 400 fs pulse train and walkoff free, dispersion flattened
nonlinear optical loop mirror," Electron. Lett., vol. 34, No.
9, pp. 907908, April (1998).
[253] T. Yamamoto, E. Yoshida, and M. Nakazawa," Ultrafast
nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM
signals," Electron. Lett., vol. 34, No. 10, pp. 10131014,
May (1998).
[254] E. Yoshida, T. Yamamoto, A. Sahara, and M. Nakazawa,"
320 Gbit/s TDM transmission over 120 km using 400 fs pulse train,"
Electron. Lett., vol. 34, No. 10, pp. 10041005, April (1998).
[255] T. Imai, T. Komukai, and M. Nakazawa," Dispersion tuning
of a linearly chirped fiber Bragg grating without a center wavelength
shift by applying a strain gradient," IEEE, Photon. Tech. Lett.,
vol. 10, No. 6, pp. 845847, June (1998).
[256] M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida,"
Coherence degradation in the process of supercontinuum generation
in an optical fiber," Optical Fiber Technology, 4, pp.215223,
April, (1998)
[257] M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura," Timedomain
ABCD matrix formalism for laser modelocking and optical pulse transmission,"
IEEE J. Quantum Electron., vol. 34, No. 7, pp. 10751081, July (1998).
[258] H. Inaba, Y. Akimoto, K. Tamura, E Yoshida, T. Komukai, and
M. Nakazawa," A singlefrequency and singlepolarization fiber
ring laser using a 5 GHz fiber Bragg grating," IEICE Trans. Electron.,
CI, vol. J81CI, No. 8, pp. 451459, August (1998).
[259] E. Yoshida and M. Nakazawa," Wavelength tunable 1.0
ps pulse generation in 1.5301.555 μm region from PLL, regeneratively
modelocked fibre laser," Electron. Lett., vol. 34, No. 18,
pp 17531754, September (1998).
[260] T. Komukai and M. Nakazawa, "Fabrication of nonlinearly
chirped fiber gratings for higherorder dispersion compensation,"
Opt. Commun., vol. 154, pp. 58 (1998)
[261] K. Tamura and M. Nakazawa, "Timing jitter of solitons
compressed in dispersiondecreasing fibers," Opt. Lett., vol.
23, No. 17, pp. 13601362, September (1998).
[262] A. Sahara, K. Suzuki, H. Kubota, T. Komukai, E. Yamada, T.
Imai, K. Tamura and M. Nakazawa," Single channel 40 Gbit/s
soliton transmission field experiment over 1000 km in Tokyo metropolitan
optical loop network using dispersion compensation," Electron.
Lett., vol. 34, pp. 21542155, October (1998).
[263] K. Suzuki, H. Kubota, T. Komukai, E. Yamada, T. Imai, K.
Tamura, A. Sahara and M. Nakazawa," 40 Gbit/s soliton transmission
field experiment over 1360 km using inline soliton control,"
Electron. Lett., vol. 34, pp. 21432144, October (1998).
[264] T. Imai, T. Komukai, and M. Nakazawa, "Second and thirdorder
dispersion compensation of picosecond pulses achieved by combining
two nonlinearly chirped fibre Bragg gratings," Electron. Lett.,
vol. 34, pp. 24222423, December (1998).


1997 


[228] T. Komukai, T. Yamamoto, T. Imai, and M. Nakazawa,"
Application of fiber Bragg gratings to spectral filtering,"
IEICE Trans. Electron., CI, Vol. J80CI, No.1, pp. 3240, January (1997).
[229] T. Imai and M. Nakazawa," Optical cable amplifier,"
The Laser Society of Japan, Rev. of Laser Eng., vol. 25, pp. 121125
February (1997).
[230] E. Yoshida, K. Tamura, E. Yamada, and M. Nakazawa,"
Femtosecond fiber laser at 10 GHz and its application as a multiwavelength
optical pulse source," IEICE Trans. Electron., CI, vol. J80CI, No.
2, pp. 7077, February (1997).
[231] T. Yamamoto and M. Nakazawa," Highly efficient fourwave
mixing in an optical fiber with intensity dependent phase matching,"
IEEE, Photon.Tech. Lett., vol. 9, No.3, pp. 327329, March (1997).
[232] M. Nakazawa, A. Sahara, and H. Kubota," Marked increase
in the power margin through the use of dispersionallocated soliton
and evaluation of transmission characteristics using Q mappingComparison
between DA soliton, NRZ pulse and RZ pulse at zero GVD,"
IEICE Trans. Commun., BI, vol. J80BI, N. 3, pp. 148158, March (1997).
[233] E. Yamada, H. Kubota, T. Yamamoto, A. Sahara, and M. Nakazawa,"
10 Gbit/s, 10,600 km, dispersionallocated soliton transmission
using conventional 1.3 μm singlemode fibers," Electron. Lett.,
vol. 33, No. 7, pp. 602603, March (1997).
[234] T. Yamamoto, T. Imai, T. Komukai, and M. Nakazawa,"
Demutliplexing and routing of TDM signal using wavelength conversion
by fiber fourwave mixing and wavelength routing by fiber gratings,"
IEICE Trans. Electron., CI, vol. J80CI, No. 5, pp. 186194, May (1997).
[235] T. Imai, T. Komukai, T. Yamamoto, and M. Nakazawa,"
Wavelength tunable Qswitched fiber laser using fiber Bragg gratings,"
IEICE Trans. Electron., CI, Vol. J80CI, No. 5, pp. 195203, May (1997).
[236] A. Sahara, H. Kubota, and M. Nakazawa," Experiments
and analyses of 20 Gbit/s soliton transmission systems using installed
optical fiber cables," IEICE Trans. Electron., CI, vol. J80CI, No.
5, pp. 204212, May (1997).
[237] M. Nakazawa, K. Suzuki, H. Kubota, A. Sahara, and E. Yamada,"100
Gbit/s WDM (20 Gbit/sx5 channels) soliton transmission over 10,000
km using inline synchronous modulation and optical filtering,"
Electron. Lett., vol. 33, No. 14, pp. 1233 1234, July (1997).
[238] M. Nakazawa and E. Yoshida and K. Tamura," Ideal phaselockedloop
(PLL) operation of a 10 GHz erbiumdoped fibre laser using regenerative
modelocking as an optical voltage controlled oscillator," Electron.
Lett., vol. 33, No. 15, pp. 13181319, July(1997).
[239] T. Komukai, K. Tamura, and M. Nakazawa," An efficient
0.04nm apodized fiber Bragg grating and its application to narrowband
spectral filtering," IEEE, Photon. Tech. Lett., vol. 9, No.
7, pp. 934936, July (1997).
[240] A. Sahara, H. Kubota, and M. Nakazawa, "Optimum fiber
dispersion for twostep dispersionallocated optical soliton, RZ
at zero GVD and NRZ systems," IEEE, Photon. Tech. Lett., vol.
9, No. 8, pp. 11791181, Aug., (1997).
[241] M. Nakazawa, E. Yamada, H. Kubota, T. Yamamoto, and A. Sahara,"
Numerical and experimental comparison of soliton, RZ pulse and NRZ
pulses under twostep dispersion allocation," Electron. Lett.,
vol. 33, No. 17, pp. 14801482, Aug., (1997).
[242] M. Nakazawa, "Advantages of dispersionallocated soliton
by comparison with conventional NRZ and RZ pulse transmission at
zero GVD," TOPS, OSA, vol. 12, System Technologies, pp. 299304,
(1997).
[243] M. Nakazawa," Recent progress in optical soliton communication
and its future prospectsAnalogy between optical pulse transmission
and laser modelocking," Journal of Applied Physics (In Japanese,
OuyouButsuri), vo. 66, no. 9, pp. 922932 (1997).
[244] E. Yoshida and M. Nakazawa," Lowthreshold 115GHz continuouswave
modulationalinstability erbiumdoped fiber laser," Opt. Lett.,
vol. 22, No. 18, pp. 14091411, September (1997).
[245] T. Yamamoto and M. Nakazawa," Active optical pulse compression
with a gain of 29.0 dB by using fourwave mixing in an optical fiber,"
IEEE, Photon. Tech. Lett., vol. 9, No. 12, pp. 15951597, December
(1997).


1996 


[204] K. Tamura and M. Nakazawa, "Pulse compression by nonlinear
pulse evolution with reduced optical wave breaking in erbium  doped
fiber amplifiers", Opt. Lett., vol. 21, No. 1, pp. 6870, Jan.,
(1996).
[205] M. Nakazawa," TelecommunicationsRides a New Wave,"
Photonics Spectra, Feb., pp. 97104, (1996).
[206] M. Nakazawa, K. Tamura, and E. Yoshida, " Supermode
noise suppression in a harmonically modelocked fibre laser by selfphase
modulation and spectral filtering," Electron. Lett., vol. 32,
Feb., pp. 461462, (1996).
[207] M. Nakazawa, H. Kubota, and K. Tamura, "Nonlinear pulse
transmission through an optical fiber at zeroaverage group velocity
dispersion," IEEE, Photon. Tech. Lett., vol. 8, No. 3, March,
pp. 452454, (1996).
[208] M. Nakazawa," Recent progress in ultrahigh speed optical
soliton communication," J. of IEICE, vol. 79, No. 3, March,
pp. 259271, (1996).
[209] M. Nakazawa, K. Suzuki, H. Kubota, Y. Kimura, E. Yamada,
K. Tamura, T. Komukai, and T. Imai,"40 Gbit/s WDM(10 Gbit/sx4
unequally spaced channels) soliton transmission over 10000 km using
synchronouos modulation and narrow band optical filtering,"
Electron. Lett., vol. 32, No. 9, April, pp. 828829, (1996).
[210] K. Tamura, E. Yoshida, E. Yamada, and M. Nakazawa,"
Generation of a 0.5 W average power train of femtosecond pulses
at 10 GHz in the 1.55 μm region" Electron.Lett., vol . 32,
pp. 835836 April (1996).
[211] K. Tamura, E. Yoshida, and M. Nakazawa," Generation
of 10 GHz pulse trains at 16 wavelengths by spectrally slicing a
high power femtosecond source, " Electron. Lett., vol. 32,
No. 18, pp. 16911692, April (1996).
[212] A. Sahara, H. Kubota, and M. Nakazawa," Qfactor contour
mapping for evaluation of optical transmission systems:soliton against
NRZ against RZ pulse at zero group velocity dispersion," Electron.
Lett., vol. 32, May, pp. 915916, (1996).
[213] M. Nakazawa, E. Yoshida, E. Yamada, and Y. Kimura,"
A repetitionrate stabilized and tunable, regeneratively modelocked
fiber laser using an offsetlocking technique," Jpn. J. Appl.
Phys., vol. 35, June, pp. L691694, (1996).
[214] M. Nakazawa, "Recent progress in longdistance soliton
communication," Laser Society of Japan, Rev. of Laser Eng.,
vol. 24, No. 6, June, pp. 633640 (1996).
[215] M. Nakazawa, K. Suzuki, and E. Yamada, "NOLM oscillator
and its injection locking technique for timing clock extraction
and demutiplexing," Electron. Lett., vol. 32, No. 12, pp. 11221123,
June (1996).
[216] M. Nakazawa, E. Yoshida, and K. Tamura," 10 GHz, 2 ps
regenratively and harmonically FM modelocked erbiumfibre ring
laser," Electron. Lett., vol. 32, No. 14, July, pp. 12851287,
(1996).
[217] M. Nakazawa and E. Yoshida," Direct generation of a
750 fs, 10 GHz pulse train from a regeneratively modelocked fibre
laser with multiple harmonic modulation," Electron. Lett.,
vol. 32, No. 14, pp. 12911293, July (1996).
[218] E. Yoshida and M. Nakazawa," 80200 GHz erbiumdoped
fibre laser using a rational harmonic modelocking technique,"
Electron. Lett., vol. 32, No. 15, pp. 13711372, July (1996).
[219] M. Nakazawa, K. Suzuki, H. Kubota, and E. Yoshida,"
60 Gbit/s WDM (20 Gbit/sx3 unequally spaced channels) soliton transmission
over 10000 km using inline synchronous modulation and optical filtering,"
Electron. Lett., vol. 32, No. 18 , pp. 16861687, August (1996).
[220] M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura," Marked
increase in the power margin through the use of a dispersion allocated
soliton," IEEE, Photon. Tech. Lett., vol. 8, No. 8, pp. 10881090,
Aug., (1996).
[221] M. Nakazawa, H. Kubota, and E. Yamada," Generation and
transmission of optical soliton pulses," IEICE Trans. Electron., CII,
vol. J79CII, No. 8, pp. 265277, August (1996).
[222] K. Tamura, T. Komukai, and M. Nakazawa," Optimization
of power extraction in a highpower soliton fiber ring laser containing
a chirped fiber grating," Appl. Phys. Lett., vol. 69, No. 11
, pp. 15351537 Sept. (1996).
[223] T. Imai, T. Komukai, T. Yamamoto, and M. Nakazawa,"
A wavelength tunable Qswitched erbiumdoped fiber laser with fiber
Bragg grating mirrors," Jpn. J. Appl. Phys. vol. 35, No. 10A,
pp. L12751277, October (1996).
[224] T. Komukai, and M. Nakazawa," Fabrication of high quality
longfiber Bragg grating by monitoring 3.1 eV radiation (400 nm)
from GeO2 defects," IEEE, Photon. Tech. Lett., vol. 8, No.
11, pp. 14951497, November (1996).
[225] K. Tamura and M. Nakazawa," Dispersiontuned harmonically
modelocked fiber laser for selfsynchronization to external clock,"
Opt. Lett., vol. 21, NO. 24, pp. 19841986, December (1996).
[226] K. Tamura and M. Nakazawa," Pulse energy equalization
in harmonically FM modelocked lasers with slow gain," Opt.
Lett., vol. 21, No.23, pp. 19301932, December (1996).
[227] T. Komukai, T. Yamamoto, T. Imai, M. Nakazawa, "Fabrication
of high quality fiber Bragg grating and its wavelength tuning",
IEICE Trans. Electron., CI, Vol. J79CI, No.11, pp. 413419, November
(1996)


1995 


[177] H. Kubota and M. Nakazawa, "Soliton Transmission Control
for Ultra High Speed System", IEICE Trans. Electron., vol.
E78C, No. 1, pp. 511, Jan., (1995).
[178] T. Sugawa, K. Kurokawa, H. Kubota, and M. Nakazawa, "Polarization
Dependence of Soliton Interactions in Femtosecond Soliton Transmission",
IEICE Trans. Electron., vol. E78C, No. 1, pp. 2837, Jan., (1995).
[179] M. Nakazawa and H. Kubota, "Optical soliton communication
in a positively and negatively dispersionallocated optical fibre
transmission line", Electron. Lett., vol. 31, No. 3, pp. 216217,
Feb., (1995).
[180] T. Komukai, Y. Miyajima, and M. Nakazawa, "An inline
optical band pass filter with fiber gratings and an optical circulator
and its application to pulse compression", Jpn. J. Appl. Phys.,vol.
34, Feb., pp. L230L232, (1995).
[181] T. Komukai, Y. Miyajima, and M. Nakazawa, "Inline fiber
gratingtype optical bandpass filter tuned by applying lateral stress",
Jpn. J. Appl. Phys., vol. 34, March, pp. L306308, (1995).
[182] E. Yoshida, Y. Kimura, and M. Nakazawa, "20 GHz, 1.8
ps Pulse Generation from a Regeneratively ModeLocked ErbiumDoped
Fibre Laser and its Femtosecond Pulse Compression", Electron.
Lett., vol. 31, March, pp. 377378, (1995).
[183] M. Nakazawa, K. Suzuki, E. Yoshida, T. Kitoh and M. Kawachi,
"160 Gbit/s soliton data transmission over 200km", Electron.
Lett., Vol. 31, No. 7, pp. 565  566, April., (1995).
[184] T. Yamamoto, T. Imai, T. Komukai, Y. Miyajima and M. Nakazawa,
"Optical demultiplexing and routing of a TDM signal by using
four  wave mixing and a novel wavelength router with optical circulators
and fiber gratings", Electron. Lett., vol. 31, No. 9, pp. 744
 745, Apr., (1995).
[185] M. Nakazawa, Y. Kimura, K. Suzuki, H. Kubota, T. Komukai,
E. Yamada, T. Sugawa, E. Yoshida, T. Yamamoto, T. Imai, A. Sahara,
H.Nakazawa, O.Yamauchi and M. Umezawa, "Field demonstration
of soliton transmission at 10 Gbit/s over 2000 km in Tokyo metropolitan
optical loop network", Electron. Lett., vol. 31, No. 12, pp.
992  993, June., (1995).
[186] M. Nakazawa and H. Kubota, "Construction of Dispersion
 Allocated Soliton Transmission Line Using Conventional Dispersion
 Shifted Nonsoliton Fibers", Jpn. J. Appl. Phys., vol. 34,
Part 2, No.6A, pp. L681  L683, June., (1995).
[187] K. Tamura, Y. Kimura and M. Nakazawa, "Femtosecond pulse
generation over 82 nm wavelength span from passively modelocked
erbium  doped fiber laser", Electron. Lett., vol. 31, No.
13, pp. 1062  1063, June., (1995).
[188] M. Nakazawa and K. Sizuki, "10Gbit/s pseudorandom dark
soliton data transmission over 1200 km", Electron. Lett.,vol.
31, No. 13, pp. 1076  1077, June., (1995).
[189] M. Nakazawa and K. Suzuki, "Generation of a pseudorandom
dark soliton data train and its coherent detection by one  bit
 shifting with a Mach  Zehnder interferometer", Electron.
Lett., Vol. 31, No. 13, pp. 1084  1085, June., (1995).
[190] T. Sugawa, H. Kubota and M. Nakazawa, "Polarization
dependence of femtosecond soliton  soliton interactions in dispersion
shifted fiber", Opt. Lett., Vol. 20, No. 13, pp. 1453  1455,
July, (1995).
[191] M. Nakazawa and H. Kubota, "Analyses of the Dispersion
 Allocated Bright and Dark Solitons", Jpn. J. Appl. Phys.,
vol. 34, Part 2, No.7B, pp. L889  L891, July., (1995).
[192] K. Tamura, E. Yoshida, T. Sugawa and M. Nakazawa, "Broadband
light generation by femtosecond pulse amplification with stimulated
Raman scattering in a high  power erbium  doped fiber amplifier",
Opt. Lett., vol. 20, No. 15, pp. 1631  1633, Aug., (1995).
[193] E. Yamada, E. Yoshida, T. Kitoh and M. Nakazawa, "Generation
of terabit per second optical data pulse train", Electron.
Lett., vol. 31, No. 16, pp. 1342  1343, Aug., (1995).
[194] M. Nakazawa, Y. Kimura, K. Suzuki, H. Kubota, T. Komukai,
E. Yamada, T. Sugawa, E. Yoshida, T. Yamamoto, T.Imai, A. Sahara,
O.Yamauchi and M. Umezawa, "Soliton transmission at 20 Gbit/s
over 2000 km in Tokyo metropolitan optical network", Electron.
Lett., vol. 31, No. 17, pp. 1478  1479, Aug., (1995).
[195] K. Suzuki and M. Nakazawa, "Recent Progress in Optical
Soliton Communication", Optical Fiber Technology, 1, pp.289
 308, Aug., (1995)
[196] M. Nakazawa and Y. Kimura, "Optical cable amplifiers",
Electron. Lett., vol. 31, No. 20, pp. 1744  1445, Sep., (1995).
[197] M. Nakazawa, A. Sahara, T. Imai, T. Yamamoto, E. Yamada and
Y. Kimura, "A Novel Technique for Measuring Group Velocity
Dispersion of an Installed Ultralong Fiber by Using Erbium  Doped
Fiber Amplifiers", Jpn. J. Appl. Phys., vol. 34, Part 2, No.9A,
pp. L1167  L1169, Sep., (1995).
[198] T. Yamamoto, T. Imai, T. Komukai, Y. Miyajima and M. Nakazawa,
"High speed optical path routing by using four  wave mixing
and a wavelength router with fiber gratings and optical circulators",
Optics Communications, 120 , pp.245  248, Nov., (1995).
[199] E. Yoshida, Y. Kimura and M. Nakazawa, "Ultrahigh Speed
Picosecond  Femtosecond Fiber Lasers", Optoelectronics Devices
and Technologies, vol. 10, No. 4, pp. 531  542, Sep., (1995).
[200] K. Tamura and M. Nakazawa, "Optimizing power extraction
in stretched  pulse fiber ring lasers", Appl. Phys. Lett.,
Vol. 67, No. 25, pp.3691  3693, Dec., (1995).
[201] K. Tamura, T. Komukai, T. Yamamoto, T. Imai, E. Yoshida and
M. Nakazawa, "High energy, sub  picosecond pulse compression
at 10GHz using a fiber / fiber  grating pulse compressor",
Electron. Lett., Vol. 31, No. 25, pp. 2194  2195, Dec., (1995).
[202] T. Komukai and M. Nakazawa, "Tunable single frequency
erbium doped fiber ring lasers using fiber grating etalons",
Jpn. J. Appl. Phys., vol. 34, Part 2, No. 6A, L679L680, June, (1995)
[203] T. Komukai and M. Nakazawa, "Efficient fiber gratings
formed on high NA dispersionshifted fiber and dispersionflattened
fiber", Jpn. J. Appl. Phys., vol. 34, Part 2, No. 10A, L1286L1287,
October, (1995)


1994 


[164] K. Suzuki, E. Yamada, H. Kubota, and M. Nakazawa, "Optical
soliton communication system using erbiumdoped fiber amplifiers",
Fiber Integ. Opt., vol. 13, No. 1, p. 4564, Jan., (1994).
[165] M. Nakazawa, "Soliton Transmission in Telecommunication
Networks," IEEE Communications Magazine, vol. 32, No. 3, pp.
3441, March (1994).
[166] E. Yamada and M. Nakazawa, "Reduction of Amplified Spontaneous
Emission from a Transmitted Soliton Signal Using a Nonlinear Amplifying
Loop Mirror and a Nonlinear Optical Loop Mirror", IEEE J. Quantum
Electron., vol. 30, No. 8, pp. 18421850, Aug., (1994).
[167] M. Nakazawa," Ultrahigh speed optical soliton communication,"
O plus E (in Japanese), Invited paper, No. 177, pp. 5364, Aug.,
(1994).
[168] M. Nakazawa, K. Suzuki, H. Kubota, E. Yamada, and, Y. Kimura,
"Straightline soliton data transmission at 20 Gbit/s beyond
GordonHaus limit", Electron. Lett., vol. 30, No. 16, pp. 13311332,
Aug., (1994).
[169] K. Kurokawa, H. Kubota, and M. Nakazawa, "Femtosecond
Soliton Interactions in a Distributed ErbiumDoped Fiber Amplifier",
IEEE, J. Quantum Electron., vol. 30, pp. 22202226, Sep., (1994).
[170] M. Nakazawa, E. Yoshida, and Y. Kimura, "Ultrastable
harmonically and regeneratively modelocked polarisationmaintaining
erbium fibre ring laser", Electron. Lett., vol. 30, No. 19,
pp. 16031604, Sep., (1994).
[171] E. Yoshida, Y. Kimura, and M. Nakazawa, "Femtosecond
ErbiumDoped Fiber Laser with Nonlinear Poarization Rotation and
Its Soliton Compression", Jpn. J. Appl. Phys., vol. 33, No.
10, Part 1, pp. 57795783, Oct., (1994).
[172] E. J. Greer, Y. Kimura, K. Suzuki, E. Yoshida, and M. Nakazawa,
"Generation of 1.2 ps, 10 GHz pulse train from alloptically
modelocked, erbium fibre ring laser with active nonlinear polarization
rotation", Electron. Lett., vol. 30, No. 21, pp. 17641765,
Oct., (1994).
[173] M. Nakazawa, E. Yoshida, E. Yamada, K. Suzuki, T. Kitoh,
and M. Kawachi, "80 Gbit/s soliton data transmission over 500
km with unequal amplitude solitons for timing clock extraction",
Electron. Lett., vol. 30, No. 21, pp. 17771778, Oct., (1994).
[174] E. Yamada, K. Suzuki, and M. Nakazawa, "Subpicosecond
optical demultiplexing at 10 GHz with zerodispersion, dispersionflattened,
nonlinear fibre loop mirror controlled by 500 fs gainswitched laser
diode", Electron. Lett., vol. 30, No. 23, pp. 19661967, Nov.,
(1994).
[175] T. Sugawa, K. Kurokawa, H. Kubota, and M. Nakazawa, "Soliton
selffrequency shift in orthogonally polarised femtosecond solitons",
Electron. Lett., vol. 30, No. 23, pp. 19631964, Nov., (1994).
[176] M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, "Generation
of a 170 fs, 10 GHz transformlimited pulse train at 1.55 μm using
a dispersiondecreasing, erbiumdoped active soliton compressor",
Electron. Lett., vol. 30, No. 24, pp. 20382040, Nov., (1994).


1993 


[148] M. Nakazawa, E. Yoshida, and Y. Kimura, "Generation
of 98 fs optical pulses directly from an erbiumdoped fiber ring
laser at 1.57 μm", Electron. Lett., vol. 29, No. 1, pp. 6364,
Jan, (1993).
[149] Y. Kimura, and M. Nakazawa, "Gain characteristics of
erbiumdoped fiber amplifiers with high erbium concentration",
Jpn. J. Appl. Phys., vol. 32, pp. 11201125, Mar, (1993).
[150] M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota, Y. Kimura and
M. Takaya, "Experimental demonstration of soliton data transmission
over unlimited distances with soliton control in time and frequency
domains", Electron. Lett., vol. 29, No. 9, pp. 729730, Apr.,
(1993).
[151] E. Yamada, K. Suzuki, and M. Nakazawa," Reduction of
ASE noise from transmitted soliton signals with a nonlinear amplifying
optical loop mirror," IEICE Trans. Electron. (in Japanese), vol. J76CI,
No. 4, pp. 8188, Apr., (1993).
[152] E. Yamada, K. Suzuki, H. Kubota, and M. Nakazawa, "Ultrahigh
speed optical soliton communication using erbiumdoped fiber amplifiers",
IEICE Trasns. Commun. vol. E76B, pp. 410419, Apr., (1993).
[153] M. Nakazawa, K. Suzuki, H. Kubota and Y. Kimura, "SelfQswitching
and mode locking in a 1.53μm fiber ring laser with saturable absorption
in erbiumdoped fiber at 4.2 K", Opt. Lett., vol. 18, No. 8,
pp. 612615, Apr., (1993).
[154] H. Kubota and M. Nakazawa," Soliton transmission control
in time and frequency domains," IEICE Trans. Electron. (in Japanese),vol.
J76CI, No. 5, pp. 147157, May(1993).
[155] E. Yamada, K. Wakita and M. Nakazawa, "30 GHz pulse
train generation from a multiquantum well electroabsorption intensity
modulator", Electron. Lett., vol. 29, No. 10, pp. 845846,
May(1993).
[156] T. Sugawa, Yoshida, Y. Miyajima and M. Nakazawa, "1.6
ps pulse generation from a 1.3 μm Pr^{3+}doped fluoride fibre laser",
Electron. Lett., vol. 29, No. 10, pp. 902903, May(1993).
[157] M. Nakazawa, E. Yoshida, T. Sugawa and Y. Kimura, "Continuum
suppressed, uniformly repetitive 136 fs pulse generation from an
erbiumdoped fiber laser with nonlinear polarisation rotation",
Electron. Lett., vol. 29, No. 15, pp. 13271328, July (1993).
[158] H. Kubota and M. Nakazawa, "Soliton transmission control
in time and frequency domains", IEEE J. Quantum Electron.,
vol. 29, No. 7, pp. 21892197, July (1993).
[159] M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota and Y. Kimura,
"Straightline soliton data transmission over 2000 km at 20
Gbit/s and 1000 km at 40 Gbit/s using erbiumdoped fiber amplifiers",
Electron. Lett., vol. 29, No. 16, pp. 14741475, Aug., (1993).
[160] E. Yoshida, Y. Kimura, and M. Nakazawa, "Femtosecond
erbiumdoped fiber lasers and a soliton compression technique",
Jpn. J. Appl. Phys., vol. 32, pp. 34613466, Aug., (1993).
[161] M. Nakazawa, K. Suzuki, H. Kubota and Y. Kimura, "Active
Q switching and mode locking in a 1.53μm fiber ring laser with
saturable absorption in erbiumdoped fiber at 4.2 K", Opt.
Lett., vol. 18, No. 18, pp. 15261528, Sep., (1993).
[162] H. Kubota and M. Nakazawa, "Soliton transmission with
long amplifier spacing under soliton control", Electron. Lett.,
vol. 29, No. 20, pp. 17801781, Sep., (1993).
[163] M. Nakazawa and H. Kubota, "Physical interpretation
of reduction of soliton interaction forces by bandwidth limited
amplification", Electron. Lett., vol. 29, No. 2, pp. 226227,
Jan., (1993)


1992 


[132] M. Nakazawa, Y. Kimura, K. Kurokawa, and K. Suzuki, "Selfinducedtransparency
solitons in an erbiumdoped fiber waveguide," Phys. Rev. A,
vol. 45, pp. 2326 (1992).
[133] H. Kubota and M. Nakazawa,"Partial soliton communication
system," Opt. Commun., vol. 87, pp. 1518 (1992).
[134] E. Yoshida, Y. Kimura, and M. Nakazawa," Laser diodepumped
femtosecond erbiumdoped fiber laser with a subring cavity for
repetition rate control," Appl. Phys. Lett., vol. 60, pp. 932934
(1992).
[135] M. Nakazawa, K. Suzuki, Y. Kimura, and H. Kubota, "Coherent
ppulse propagation with pulse breakup in an erbiumdoped fiber
waveguide amplifier," Phys. Rev., vol. 45, pp. 26822685 (1992).
[136] M. Nakazawa and H. Kubota," Physical interpretation
of reduction of soliton interaction forces by bandwidth limited
amplification," Electron. Lett., vol. 28, pp. 958960 (1992).
[137] M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota and Y. Kimura,"
10 Gbit/s, 1200 km errorfree soliton data transmission using erbiumdoped
fibre amplifiers," Electron. Lett., vol. 28, pp. 817818 (1992).
[138] M. Nakazawa, K. Suzuki, and E. Yamada," 20 Gbit/s, 1020
km penaltyfree soliton data transmission using erbiumdoped fibre
amplifiers," Electron. Lett., vol. 28, pp. 10461047 (1992).
[139] M. Nakazawa, H. Kubota, E. Yamada, and K. Suzuki," Infinitedistance
soliton transmission with soliton controls in time and frequency
domains," Electron. Lett., vol. 28, pp. 10991100 (1992).
[140] K. Kurokawa and M. Nakazawa," Femtosecond soliton transmission
characteristics in an ultralong erbiumdoped fiber amplifier with
different pumping configuration," IEEE, J. Quantum Electron.
vol. QE28, pp. 19221929 (1992).
[141] Y. Kimura and M. Nakazawa," Gain characteristics of
erbiumdoped fibre amplifiers with high erbium concentration,"
Electron. Lett., vol. 28, pp. 14201421 (1992).
[142] M. Nakazawa, Y. Kimura, and K. Suzuki," Self induced
transparency soliton and coherent ƒÎ pulse propagation in erbiumdoped
fibers and amplifiers," Review of Laser Eng. (in Japanese),
vol. 20, No. 8, pp. 638652 (1992).
[143] K. Suzuki, H. Kubota, and M. Nakazawa, "Soliton communication
using erbiumdoped fiber amplifiers," Review of Laser Eng.
(in Japanese), Vol. 20, No. 8, pp. 662672 (1992).
[144] E. Yoshida, Y. Kimura, and M. Nakazawa," Femtosecond
erbium fiber laser with a nonlinear amplifying loop mirror pumped
by laser diodes and the repetition rate control of output pulses,"
IECE of Japan (in Japanese),vol. J75CI, No.10, pp. 613621 (1992).
[145] K. Kurokawa, H. Kubota, and M. Nakazawa, "Soliton selffrequency
shift accelerated by femtosecond soliton interaction", Electron
Lett., vol. 28, No. 22, pp. 20522053 (1992).
[146] M. Nakazawa and Y. Kimura, "Electronbeam vapourdeposited
erbiumdoped glass waveguide laser at 1.53 μm", Electron. Lett.,
vol. 28, No. 22, pp. 20542055, Oct., (1992)
[147] K. Kurokawa, H. Kubota and M. Nakazawa, "Significant
modification of femtosecond soliton interaction in gain medium by
small subpulses", Electron. Lett., vol. 28, No. 25, pp. 23342335,
Dec., (1992)


1991 


[114] Y. Kimura, K. Suzuki, and M. Nakazawa," Noise figure
characteristics of Er^{3+}doped fibre amplifier pumped in 0.8 μm band,"
Electron. Lett., vol. 27, pp. 146147(1991).
[115] E. Yamada and M. Nakazawa, "Automatic intensity control
of an optical transmission line using enhanced gain saturation in
cascaded optical amplifiers," IEEE, J. Quantum Electron., vol.
QE27, pp. 146151 (1991).
[116] M. Nakazawa, H. Kubota, K. Kurokawa, and E. Yamada,"
Femtosecond optical soliton transmission over long distances using
adiabatic trapping and soliton standardization," J. Opt. Soc.
Amer., B, vol. 8, pp. 18111817 (1991).
[117] H. Kubota and M. Nakazawa,"Recent progress on optical
soliton communication," IEICE Transactions, Invited Paper,
vol. E74, pp. 13731378 (1991).
[118] K. Kurokawa and M. Nakazawa, "Wavelengthdependent amplification
characteristics of femtosecond erbiumdoped fiber amplifiers,"
Appl. Phys. Lett., vol. 58, pp. 28712873 (1991).
[119] E. Yamada, K. Suzuki, and M. Nakazawa, "Stabilization
of optical output power using gain saturation of EDFA and its application
to soliton communication," Trans. IECE (in Japanese), vol.
J74CI, pp. 167175 (1991).
[120] M. Nakazawa, E. Yamada, and H. Kubota,"Coexistence of
selfinduced transparency soliton and nonlinear Schršdinger soliton,"
Phys. Rev. Lett., vol. 66, pp. 26252628 (1991).
[121] M. Nakazawa and Y. Kimura," Lanthanum codoped erbium
fibre amplifier," Electron. Lett., vol. 27, pp. 10651067 (1991).
[122] M. Nakazawa, E. Yamada, H. Kubota, and K. Suzuki,"10
Gbit/s soliton data transmission over one million kilometres,"
Electron. Lett., vol. 27, pp. 12701272 (1991).
[123] E. Yamada, K. Suzuki, and M. Nakazawa," 10 Gbit/s singlepass
soliton transmission over 1000 km," Electron. Lett., vol. 27,
12891290 (1991).
[124] M. Nakazawa and K. Kurokawa," Femtosecond soliton transmission
in 18 kmlong dispersionshifted distributed erbiumdoped fibre
amplifier," Electron. Lett., vol. 27, pp. 13691370 (1991).
[125] M. Nakazawa, K. Suzuki, E. Yamada, and H. Kubota, "Observation
of nonlinear interactions in 20 Gbit/s soliton transmission over
500 km using erbiumdoped fibre amplifiers," Electron. Lett.,
vol. 27, pp. 16621663 (1991).
[126] M. Nakazawa, E. Yoshida, and Y. Kimura,"Low threshold,
290 fs erbiumdoped fiber laser with a nonlinear amplifying loop
mirror pumped by InGaAsP laser diodes," Appl. Phys. Lett.,
vol. 59, pp. 20732075 (1991).
[127] M. Nakazawa," Optical soliton transmission," Trans. IECE
(in Japanese) , Invited paper, vol. J74CI, pp. 429439
(1991).
[128] M. Nakazawa, E. Yamada, H. Kubota, "Coexistence of a
selfinducedtransparency soliton and a nonlinear Schršdinger soliton
in an erbiumdoped fiber," Phys. Rev. A, vol. 44, pp. 59735987
(1991).
[129] K. Kurokawa and M. Nakazawa, "Femtosecond soliton transmission
in 18 km erbiumdoped fibre amplifier with different pumping configurations,"
Electron. Lett., vol. 27, pp. 17651766 (1991).
[130] Y. Kimura, E. Yoshida, and M. Nakazawa,"High gain characteristics
of an erbiumdoped fiber amplifier pumped in the 800 nm band,"
Jpn. J. Appl. Phys., vol. 30, pp. 19952001 (1991).
[131] Y. Kimura, K.Suzuki, and M. Nakazawa," Noise figure
characteristics of Er^{3+}doped fiber amplifier pumped in 0.8 μm band,"
Electron. Lett., vol. 27, No. 2, pp. 146147, Jan., (1991)


1990 


[90] M. Nakazawa, K. Suzuki, and Y. Kimura," 3.25 Gb/s, 100
km errorfree soliton transmission with erbium amplifiers and repeaters,"
IEEE, Photon. Tech. Lett., vol. 2, pp. 216219 (1990).
[91] H. Kubota and M. Nakazawa," Long distance optical soliton
transmission with lumped amplifiers," IEEE, J. Quantum Electron.,
vol. QE26, pp. 692700 (1990).
[92] Y. Kimura, K. Suzuki, and M. Nakazawa," Pump wavelength
dependence of the gain factor in 1.48 μmpumped Er^{3+}doped fiber
amplifiers," Appl. Phys. Lett., vol. 56, pp. 16111613 (1990).
[93] K. Kurokawa, M. Nakazawa, and T. A. Caughey," Near Infrared
ultrashort pulse generation with LiNbO3 by difference frequency
generation," Opt. Commun. , vol. 75, pp. 413418 (1990).
[94] M. Nakazawa, K. Suzuki, and Y. Kimura," Generation and
transmission of optical solitons in the GHz region using a directly
modulated distributedfeedback laser diode," Opt. Lett., vol.
15, pp. 588590 (1990).
[95] M. Nakazawa, K. Suzuki, and Y. Kimura," Transformlimited
pulse generation in the GHz region from a gainswitched distributedfeedback
laser diode using spectral windowing," Opt. Lett. vol. 15,
pp. 715717 (1990).
[96] K. Suzuki, M. Nakazawa, E. Yamada, and Y. Kimura," 5 Gbit/s, 250
km errorfree soliton transmission with Er^{3+}doped fiber amplifiers
and repeaters," Electron. Lett., vol. 26, pp. 551553 (1990).
[97] M. Nakazawa, Y. Kimura, and K. Suzuki," High gain erbium
fibre amplifier pumped by 800 nm band," Electron. Lett., vol.
26, pp. 548549 (1990).
[98] K. Suzuki, Y. Kimura, and M. Nakazawa," High gain Er^{3+}doped
fibre amplifier pumped by 820 nm GaAlAs laser diodes," Electron.
Lett., vol. 26, pp. 948949 (1990).
[99] M. Nakazawa, K. Kurokawa, H. Kubota, K. Suzuki, and Y. Kimura,"
Femtosecond erbiumdoped optical fiber amplifier," Appl. Phys.
Lett., vol. 57, pp. 653655 (1990).
[100] K. Suzuki, and M. Nakazawa," Automatic optical soliton
control using cascaded Er^{3+}doped fibre amplifiers," Electron.
Lett., vol. 26, pp. 10321033 (1990).
[101] M. Nakazawa, Y. Kimura, and K. Suzuki," Gaindistribution
measurements along an ultralong erbiumdoped fiber amplifier using
opticaltimedomain reflectometry," Opt. Lett., vol. 15, pp.
12001202 (1990).
[102] H. Kubota and M. Nakazawa," Maximum transmission capacity
of a soliton communication system with lumped amplifiers,"
Electron. Lett., vol. 26, pp. 14541455 (1990).
[103] M. Nakazawa" Erbiumdoped optical fiber amplifiers and
thier applications," Journal of Applied Physics (In Japanese,
OuyouButsuri), vol. 59, no.9, pp. 11751192 (1990).
[104] M. Nakazawa, K. Suzuki, E. Yamada, and Y. Kimura," 20
Gbit/s soliton transmission over 200 km using erbiumdoped fibre
repeaters," Electron. Lett., vol. 26, pp. 15921593 (1990).
[105] M. Nakazawa, K. Kurokawa, H. Kubota, and E. Yamada,"
Observation of the trapping of an optical soliton by adiabatic gain
narrowing and its escape," Phys. Rev. Lett., vol. 65, pp. 18811884
(1990).
[106] K. Suzuki, Y. Kimura, and M. Nakazawa,"High power Er^{3+}doped
fiber amplifier pumped by 1.48 μm laser diodes," Jpn. J. Appl.
Phys., vol. 29, pp. L2067L2069 (1990).
[107] Y. Kimura, M. Nakazawa, and K. Suzuki," Ultraefficient
erbiumdoped fiber amplifier," Appl. Phys. Lett., vol. 57,
pp. 26352637 (1990).
[108] M. Nakazawa, Y. Kimura, E. Yoshida, and K. Suzuki,"
Efficient erbiumdoped fibre amplifier pumped at 820 nm," Electron.
Lett., vol. 26, pp. 19361937 (1990).
[109] M. Nakazawa," Propagation and amplification of ultrashort
optical soliton pulses in erbiumdoped fibers for very high speed
communication," Springer Series in Chemical Physics, vol. 53,
Ultrafast Phenomena VII, pp. 179183 (1990).
[110] M. Nakazawa, K. Suzuki, E. Yamada," Femtosecond optical
pulse generation using a distributedfeedback laser diode,"
Electron. Lett., vol. 26, pp. 20382040 (1990).
[111] M. Nakazawa, K. Suzuki, H. Kubota, E. Yamada, and Y. Kimura,
"Dynamic Optical Soliton Communication," IEEE, J. Quantum
Electron., vol. QE26, pp. 20952102 (1990).
[112] M. Nakazawa, Y. Kimura, and K. Suzuki," Ultralong Dispersionshifted
ErbiumDoped Fiber Amplifier and Its Application to soliton transmission,"
IEEE, J. Quantum Electron., vol. QE26, pp. 21032108 (1990).
[113] M. Nakazawa, Y. Kimura, and K. Suzuki, " High gain erbium
fiber amplifier pumped by 800nm band," Electron. Lett., vol.
26, No. 8, pp. 548549, Apr., (1990)


1989 


[71] M. Nakazawa, Y. Kimura, and K. Suzuki,"Efficient Er^{3+}doped
optical fiber amplifier pumped by a 1.48 μm InGaAsP laser diode,"
Appl. Phys. Lett., vol. 54, pp. 295297 (1989).
[72] K. Suzuki, M. Nakazawa, and H. A. Haus," Parametric soliton
laser," Opt. Lett., vol. 14, pp. 320322 (1989).
[73] M. Nakazawa, Y. Kimura, and K. Suzuki, " Soliton amplification
and transmission with Er^{3+}doped fibre repeater pumped by GaInAsP
laser diode," Electron. Lett., vol.25, pp. 199200 (1989).
[74] K. Suzuki, M. Nakazawa, and H. A. Haus," The parametric
soliton laser with low pedestal," Jpn. J. Appl. Phys. vol.
28, pp. L256258 (1989).
[75] M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus," Highorder
solitons and the modulational instability," Phys. Rev. A, vol.
39, pp. 57685776 (1989).
[76] H. Kubota and M. Nakazawa," Study of optical pulse compression
with higherorder nonlinearity and dispersion," Jpn. J. Appl.
Phys., vol. 28, pp. 609614 (1989).
[77] K. Kurokawa and M. Nakazawa," Femtosecond 1.41.6 μm
infrared pulse generation at a high repetition rate by difference
frequency generation," Appl. Phys. Lett., vol. 55, pp. 79
(1989).
[78] K. Suzuki, Y. Kimura and M. Nakazawa," An 8 mW cw Er^{3+}doped
fiber laser pumped by 1.46 μm InGaAsP laser diodes," Jpn. J.
Appl. Phys., vol. 28, pp. L10001002 (1989).
[79] M. Nakazawa, K. Suzuki, and H. A. Haus," The modulational
instability laserPart I:Experiment," IEEE ,J. Quantum Electron.,
vol. QE25, pp. 20362044 (1989).
[80] M. Nakazawa, K. Suzuki, and H. Kubota, and H. A. Haus,"
The modulational instability laserPart II: Theory," IEEE,
J. Quantum Electron., vol. QE25, pp. 20452052 (1989).
[81] K. Hagimoto, K. Iwatsuki, A. Takada, M. Nakazawa, et. al.M. Saruwatari, K. Aida, and K. Nakagawa, " 250 km nonrepeated
transmission experiment at 1.8 Gb/s using LD pumped Er^{3+}doped fibre
amplifiers in IM/DD system," Electron. Lett., vol. 25, pp.
662664 (1989).
[82] K. Suzuki, Y. Kimura and M. Nakazawa," Subpicosecond
soliton amplification and transmission using Er^{3+}doped fibers pumped
by InGaAsP laser diodes," Opt. Lett., vol. 14, 865867 (1989).
[83] M. Nakazawa, Y. Kimura, K. Suzuki, and H. Kubota," Wavelength
multiple soliton amplification and transmission with an Er^{3+}doped
optical fiber," J. Appl. Phys. vol. 66, pp. 28032812 (1989).
[84] M. Nakazawa, K. Suzuki, and Y. Kimura,"20GHz soliton
amplification and transmission with an Er^{3+}doped fiber," Opt.
Lett., vol. 14, pp. 10651067 (1989).
[85] M. Nakazawa, Y. Kimura, K. Suzuki, H. Kubota," Erbiumdoped
fiber amplifier and its application to nonlinear optics," Proceedings
of SPIEThe International Society for Optical Engineering, vol.
1171, pp. 328345 (1989).
[86] K. Kurokawa, H. Kubota, and M. Nakazawa," Generation
of 72fs pulse from a cavity dumped, synchronously pumped dye laser
with a single jet," Opt. Commun., vol. 73, pp. 319321 (1989).
[87] K. Suzuki, Y. Kimura, and M. Nakazawa," Pumping wavelength
dependence on gain factor of a 0.98 μm pumped Er^{3+} fiber amplifier,"
Appl. Phys. Lett., vol. 55, pp. 25732575 (1989).
[88] Y. Kimura, K. Suzuki, and M. Nakazawa," 46.5 dB gain
in Er^{3+}doped fibre amplifier pumped by 1.48 μm GaInAsP laser diodes,"
Electron. Lett., vol. 25, pp. 16561657 (1989).
[89] Y. Kimura, K. Suzuki, and M. Nakazawa," Laserdiodepumped
mirrorfree Er^{3+}doped fiber laser," Opt. Lett., Vol. 14, No.
18, pp. 9991001, Sep., (1989)


1988 


[61] M. Nakazawa, T. Nakashima, H. Kubota, and S. Seikai,"
Efficient optical pulse compression using a pair of Brewsterangled
TeO2 crystal prisms," J. Opt. Soc. Amer., vol. B5, pp. 215221
(1988).
[62] M. Nakazawa, T. Nakashima, and H. Kubota," Optical pulse
compression using a TeO22 acoustooptical light deflector,"
Opt. Lett., vol. 13, pp. 120122 (1988).
[63] H. Kubota and M. Nakazawa," Compensation of nonlinear
chirp generated by selfsteepening using third order dispersion
of a grating pair," Opt. Commun., vol. 66, pp. 7982 (1988).
[64] Y. Kimura and M. Nakazawa," Lasing characteristics of
Er^{3+}doped silica fibers from 1553 up to 1603 nm," J. Appl. Phys.,
vol. 64, pp. 516520 (1988).
[65] T. Horiguchi M. Nakazawa, and M. Tokuda," Multimodefibertype
optical directional coupler for OTDR by using acoustooptical deflector,"
Trans. IECE (in Japanese), vol. J7lB, pp. 547554 (1988).
[66] K. Suzuki and M. Nakazawa," Raman amplification in a
P2O5doped optical fiber," Opt. Lett., vol. 13, pp. 666668
(1988).
[67] H. Kubota, K. Kurokawa, and M. Nakazawa," 29fsec pulse
generation from a linearcavity synchronously pumped dye laser,"
Opt. Lett., vol. 13, pp. 749751 (1988).
[68] M. Nakazawa, K. Suzuki, and H. A. Haus," Modulational
instability oscillation in nonlinear dispersive ring cavity,"
Phys. Rev. A, vol. 38, pp. 51935196 (1988).
[69] K. Kurokawa, H. Kubota, and M. Nakazawa,"48 fs, 190 kW
pulse generation from a cavity dumped, synchronously pumped dye
laser," Opt. Commun., vol. 68, pp. 287290 (1988).
[70] Y. Kimura and M. Nakazawa," Multiwavelength cw laser
oscillation in a Nd^{3+} and Er^{3+} doubly doped fiber laser," Appl.
Phys. Lett., vol. 53, pp. 12511253 (1988).


1987 


[51] H. A. Haus and M. Nakazawa," Theory of the fiber Raman
soliton laser," J. Opt. Soc. Amer., vol. B4, pp. 652660 (1987).
[52] T. Nakashima, M. Nakazawa, K. Nishi, and H. Kubota,"
Effect of stimulated Raman scattering on pulsecompression characteristics,"
Opt. Lett., vol. 12, pp. 404406 (1987).
[53] Y. Kimura and M. Nakazawa," Lasing spectrum of P codoped
Nd^{3+} silica fibers," Jpn. J. Appl. Phys., vol. 26, pp. L12531254
(1987).
[54] M. Nakazawa, T. Nakashima, H. Kubota, and S. Seikai, "
65femtosecond pulse generation from a synchronously pumped dye
laser without a collidingpulse modelocking technique," Opt.
Lett., vol. 12, pp. 68l683 (1987).
[55] M. Nakazawa, M. S. Stix, E. P. Ippen, and H. A. Haus,"
Theory of the synchronously pumped fiber Raman laser with selfphase
modulation," J. Opt. Soc. Amer., vol. B4, pp. 14121421 (1987).
[56] M. Nakazawa, T. Nakashima, H. Kubota, and S. Seikai,"
55 kW, 240 fs pulse generation from a cavity dumped, synchronously
pumped dye laser and its application to pulse compression,"
Appl. Phys. Lett., vol. 51, pp. 728730 (1987).
[57] Y. Kimura, M. Nakazawa, and S. Seikai, " Fiberoptic
nonlinear coherent coupler," IEEE, J. Quantum Electron., vol.
QE23, pp. 12611267 (1987).
[58] M. Nakazawa," Nonlinear optics in optical fibers,"
Journal of Applied Physics (In Japanese, OuyouButsuri), vol. 56,
no. 10, pp. 12651288 (1987).
[59] M. Nakazawa and Y. Kimura," Simultaneous oscillation
at 0.91, 1.08, 1.53 μm in a fusionspliced fiber laser," Appl.
Phys. Lett., vol. 51, pp. 17681770 (1987).
[60] Y. Kimura and M. Nakazawa," Nonlinear polarization changes
in a birefringent fiber," Jpn. J. Appl. Phys., vol. 26, pp.
15031508 (1987).


1986 


[46] M. Nakazawa," Phasesensitive detection on Lorentzian
line shape and its application to frequency stabilization of lasers,"
J. Appl. Phys., vol. 59, pp. 22972305 (1986).
[47] T. Nakashima, S. Seikai, and M. Nakazawa," Configuration
of the optical transmission line using stimulated Raman scattering
for signal light amplification," J. Lightwave Tech., vol. LT4,
pp.569573 (1986).
[48] N. Uesugi, T. Horiguchi, M. Nakazawa, and Y. Murakami,"
Optical fiber cable measurements in the field," IEEE, J. Selected
Areas in Communications, vol. SAC4, pp.732736 (1986).
[49] T. Nakashima, S. Seikai, M. Nakazawa, and Y. Negishi,"
Theoretical limit of repeater spacing in an optical transmission
line utilizing Raman amplification," IEEE, J. Lightwave Tech.,
vol. LT4, pp. 12671272 (1986).
[50] M. Nakazawa, M. Kuznetsov, and E. P. Ippen, "Theory of
the synchronously pumped fiber Raman laser," IEEE, J. Quantum
Electron., vol. QE22, pp. 19531966 (1986).


1985 


[35] M. Nakazawa, T. Nakashima, S. Seikai, and M. Ikeda,"
Selfdetecting opticaltimedomain reflectometer for singlemode
fibers," Opt. Lett., vol. 10, pp. 157159 (1985).
[36] T. Nakashima, M. Nakazawa, and S. Seikai,"Optical time
domain reflectometer with a laser diode operating as light emitter/photodetector,"
Jpn. J. Appl. Phys., vol. 24, pp. L135L136 (1985).
[37] M. Nakazawa," Synchronously pumped fiber Raman gyroscope,"
Opt. Lett., vol. 10, pp. 193195 (1985).
[38] M. Nakazawa," Highly efficient Raman amplification in
a polarizationpreserving optical fiber," Appl. Phys. Lett.,
vol. 46, pp. 628630 (1985).
[39] M. Nakazawa, T. Nakashima, and S. Seikai, " Raman amplification
in 1.41.5 μm spectral region in polarizationpreserving optical
fibers," J. Opt. Soc. Amer., vol. B2, pp. 515521 (1985).
[40] T. Nakashima, M. Nakazawa, and Y. Negishi," Sumfrequency
generation in a polarizationpreserving optical fiber," Jpn.
J. Appl. Phys., vol. 24, pp. L308310 (1985).
[41] N. Shibata, K. Okamoto, M. Nakazawa, S. Seikai, and M. Tokuda,
"Polarization mode properties of an elliptical stresscladding
fiber," Trans. IECE of Japan, vol. E68, pp. 277283 (1985).
[42] M. Nakazawa, N. Shibata, T. Horiguchi, and S. Seikai, "Polarizationmodecoupling
measurements along a spliced polarization preserving fiber using
a backscattering technique," J. Opt. Soc. Amer., vol. A2,
pp. 10661076 (1985).
[43] T. Horiguchi, K. Suzuki, N. Shibata, M. Nakazawa, and S. Seikai,"
A novel technique for reducing polarization noise in opticaltimedomain
reflectometers for singlemode fibers," J. Lightwave Tech.,
vol. LT3, pp. 901908 (1985).
[44] T. Nakashima, S. Seikai, and M. Nakazawa," Dependence
of Raman gain on relative index difference for GeO2doped singlemode
fibers," Opt. Lett., vol. 10, pp. 420422 (1985).
[45] M. Nakazawa," Measurement of polarization modecoupling
along a polarizationpreserving optical fiber using a backscattering
technique,"Jpn Soc. of Opt. (in Japanese), vol. 14, pp. 350358
(1985).


1984 


[26] M. Nakazawa, M. Tokuda, Y. Negishi, and N. Uchida," Active
transmission line: Light amplification by backward stimulated Raman
scattering in polarizationmaintaining optical fiber," J. Opt.
Soc. Amer., vol. Bl, pp. 8085 (1984).
[27] M. Nakazawa, M. Tokuda, and N. Uchida," Continuouswave
Raman oscillation for a Nd^{3+}:YAG intracavity fiber laser,"
J. Opt. Soc. Amer., vol. Bl, pp. 8690 (1984).
[28] M. Nakazawa, N. Shibata, M. Tokuda, and Y. Negishi,"
Measurements of polarization mode couplings along polarizationmaintaining
singlemode optical fibers," J. Opt. Soc. Amer., vol. Al,
pp. 285292 (1984).
[29] T. Horiguchi, M. Nakazawa, M. Tokuda, and N. Uchida,"
An acoustooptical directional coupler for an optical time domain
reflectometer," J. Lightwave Tech., vol. LT2, pp. 108115
(1984).
[30] M. Nakazawa, M. Tokuda, Y. Morishige, and H. Toratani,"
1.55 μm OTDR for singlemode optical fibre longer than 110 km,"
Electron. Lett., vol. 20, pp. 323325 (1984).
[31] Y. Morishige, S. Kishida, K. Washio, H. Toratani, and M. Nakazawa,"
Outputstabilized highrepetitionrate 1.545μm Qswitched Er:glass
laser," Opt. Lett., vol. 9. pp. 147149 (1984).
[32] M. Nakazawa, M. Tokuda, K. Washio, and Y. Asahara," 130km
long fault location for singlemode optical fiber using 1.55 μm
Qswitched Er^{3+}:glass laser," Opt. Lett., vol.9, pp. 312314
(1984).
[33] M. Nakazawa, T. Nakashima, and M. Tokuda," An optoelectronic
selfoscillatory circuit with an optical fiber delayed feedback
and its injection locking technique," J. Lightwave Tech., vol.
LT2, pp. 719730 (1984).
[34] M. Nakazawa, T. Nakashima, and S. Seikai, " Efficient
multiple visible light generation in a polarizationpreserving optical
fiber pumped by a 1.064 μm YAG laser," Appl. Phys. Lett., vol.
45, pp. 823825 (1984).


1983 


[18]@M. Nakazawa, M. Tokuda, and N. Uchida," Analyses of optical
timedomain reflectometry for singlemode fibers and of polarization
optical timedomain reflectometry for polarizationmaintaining fibers,"
Opt. Lett., vol. 8, pp. 130132 (1983).
[19] M. Nakazawa," Theory of backward Rayleigh scattering
in polarizationmaintaining singlemode fibers and its application
to polarization optical time domain reflectometry," IEEE, J.
Quantum Electron., vol. QE19, pp. 85486l (1983).
[20] M. Nakazawa, M. Tokuda, and N. Uchida," Lasing characteristics
of a Nd^{3+}:YAG laser with a long opticalfiber resonator," J.
Opt. Soc. Amer., vol. 73, pp. 838842 (1983).
[21] M. Nakazawa, and K. Aoyama," Measurement technique for
singlemode optical fiber," Rev. ECL., vol. 31, pp. 290298
(1983).
[22] M. Nakazawa and M. Tokuda,"Measurement of the fiber loss
spectrum using fiber Raman optical time domain reflectometry,"
Appl. Opt. , vol. 22, pp. 19101914 (1983).
[23] M. Nakazawa," Rayleigh backscattering theory for singlemode
optical fibers," J. Opt. Soc. Amer., vol. 73, pp. 11751180
(1983).
[24] M. Nakazawa and M. Tokuda," Continuum spectrum generation
in a multimode fiber using two pump beams at 1.3 μm wavelength region,"
Jpn. J. Appl. Phys., vol. 22, pp. L239L241 (1983).
[25] M. Nakazawa, M. Tokuda, and Y. Negishi," Measurement
of polarization mode coupling along a polarizationmaintaining optical
fiber using a backscattering technique," Opt. Lett., vol. 8,
pp. 546548 (1983).


1982 


[14] T. Musha, J. Kamimura, and M. Nakazawa," Optical phase
fluctuation thermally induced in a singlemode optical fiber,"
Appl. Opt., vol. 21, pp. 694698 (1982).
[15]M. Nakazawa, M. Tokuda, and K. Washio,@"Optical time domain
reflectometry at a wavelength of 1.5 μm using stimulated Raman scattering
in multimode, gradedindex optical fiber," J. Appl. Phys.,
vol. 53, pp. 13911393 (1982).
[16] M. Nakazawa," Frequency characteristics of selfsustained
intensity oscillation of a laser diode using a delayed electrical
feedback," IEEE, J. Quantum Electron., vol. QE18, pp. 10501052,
(1982).
[17]@M. Nakazawa, M. Tokuda, and N. Uchida,@"Continuouswave
laser oscillation with an ultralong opticalfiber resonator,"
J. Opt. Soc. Amer., vol. 72, pp. 13381344 (1982).


1981 


[8] M. Nakazawa, T. Tanifuji, M. Tokuda, and N. Uchida,"
Photon probe fault locator for singlemode optical fiber using an
acoustooptical light deflector," IEEE, J. Quantum Electron.,
vol. QE17, pp. 12641269 (1981).
[9] M. Nakazawa, T. Horiguchi, M. Tokuda, and N. Uchida,"Polarization
beat length measurement in a singlemode optical fibre by backward
Rayleigh scattering," Electron. Lett., vol. 17, pp. 513515
(1981).
[10] M. Nakazawa, M. Tokuda, and N. Uchida,"Selfsustained
intensity oscillation of a laser diode introduced by a delayed electrical
feedback using an optical fiber and an electrical amplifier,"
Appl. Phys. Lett., vol. 39, pp. 379381 (1981).
[11] M. Nakazawa, J. Kamimura, and T. Musha,"Preliminary experiment
for optical heterodyne communication with a singlemode optical
fiber by using frequency stabilized HeNe lasers," Opt. Lett.,
vol. 6, pp. 508510 (1981).
[12] M. Nakazawa, M. Tokuda, K. Washio, and Y. Morishige,"Marked
extension of diagnosis length in optical time domain reflectometry
using 1.32 μm YAG laser," Electron. Lett., vol. 17, pp. 783
785 (1981).
[13] M. Nakazawa, T. Horiguchi, M. Tokuda, and N. Uchida,"
Measurement and analysis on polarization properties of backward
Rayleigh scattering for singlemode optical fibers,"@IEEE J.
Quantum Electron., vol. QE17, pp. 23262334 (1981).


1980 


[5] M. Nakazawa and T. Musha, "Stability measurement of
the 0.633 μm line in a CH4locked 3.39 μm HeNe laser," Jpn.
J. Appl. Phys. vol. 19, pp. L315317 (1980).
[6] M. Nakazawa and T. Musha,"Stability of FMeliminated 3.39
μm HeNe/CH4 laser" Jpn. J. Appl. Phys., vol. 19, pp. L327330,
(1980).
[7] M. Nakazawa, J. Nakamura, and T. Musha," FM eliminated
CH_{4}, locked frequency stabilization of 3.39 μm HeNe laser in dual
feedback control," IEEE, J. Quantum Electron., vol. QE16,
pp. 854859 (1980).


1979 


[1] M. Nakazawa, T. Tako, and T. Musha,"Frequency stabilization
of a 3.39 μm HeNe laser with no frequency modulation," Trans. IECE
(in Japanese), vol.J62C, pp.916 (1979).
[2] M. Nakazawa, T. Tako, and T. Musha,"Observation of saturated
absorption of the 3.39 μm line in an external CH_{4}4cell," Jpn.
J. Appl. Phys., vol. 18, pp. 597602 (1979).
[3] M. Nakazawa, T. Musha, and T. Tako, "Frequencystabilized
3.39 μm HeNe laser with no frequency modulation," J. Appl.
Phys., vol. 50, pp. 25442547 (1979).
[4] M. Nakazawa, J. Nakamura, and T. Musha,"Frequency stabilization
of 0.633 μm line with the aid of 3.39μm line locked to CH_{4},"
Appl. Phys. Lett., vol. 35, pp. 745747 (1979).

ªTOP
@
